为您推荐:
仪器网 傅里叶红外光谱仪 傅里叶红外光谱仪的发展
产品导购地图

傅里叶红外光谱仪的发展

  傅里叶红外光谱仪是七十年代发展起来的第三代红外光谱仪的典型代表。它是根据光的相干性原理设计的,是一种干涉型光谱仪,具有优良的特性,完善的功能,并且应用范围极其广泛,同样也有着广泛的发展前景。

傅里叶红外光谱仪的发展

  到目前为止红外光谱仪已发展了三代。diyi代是Z早使用的棱镜式色散型红外光谱仪,用棱镜作为分光元件,分辨率较低,对温度、湿度敏感,对环境要求苛刻。60年代出现了第二代光栅型色散式红外光谱仪,由于采用先进的光栅刻制和复制技术,提高了仪器的分辨率,拓宽了测量波段,降低了环境要求。70年代发展起来的干涉型红外光谱仪,是红外光谱仪的第三代的典型代表,具有宽的测量范围、高测量精度、极高的分辨率以及极快的测量速度。傅里叶红外光谱仪是干涉型红外光谱仪器的代表,具有优良的特性,完善的功能。

傅里叶红外光谱仪的发展.jpg

  近年来各国厂家对其光源、干涉仪、检测器及数据处理等各系统进行了大量的研究和改进,使之日趋完善。由于计算机技术和自动化技术在仪器中的广泛使用,使得红外光谱仪的调整、控制、测试及结果的分析大部分由计算机完成,如显微红外光谱中的图像技术。

  随着仪器精密度的提高,红外光谱仪在分辨率和扫描速度等方面达到了很高的指标。现有的傅里叶红外光谱仪已不于中红外的使用,分束器的使用可将光谱范围可覆盖紫外到远红外的区段。这些很高的技术指标、标志材料、光路设计、加工技术和软件都达到了很高的水平。

漫反射傅里叶红外光谱仪

  通常的透射红外光谱,即使是傅里叶变换透射红外光谱,都存在如下不足:

  ①固体压片或液膜法制样麻烦,光程很难控制一致,给测量结果带来误差。另外,无论是添加红外惰性物质或是压制自支撑片,都会给粉末状态的样品造成形态变化或表面污染,使其在一定程度上失去其“本来面目”。

  ②大多数物质都有独特的红外吸收,多组分共存时,普遍存在谱峰重叠现象。

  ③透射样品池无法解决催化气相反应中反应物的“短路”问题,使得催化剂表面的吸附物种浓度较低,影响检测的灵敏度。

  ④不能用于原位(在线)研究,只能在少数研究中应用。

  因此,漫反射傅里叶红外光谱仪和衰减全反射傅里叶红外光谱仪应运而生。漫反射技术是一种对固体粉末样品进行直接测量的光谱方法。虽然早在20世纪60年代就已发展成为光谱学中的一个分支,但与红外光谱结合,是在傅里叶红外光谱仪出现后,漫反射傅里叶红外光谱仪才进入实用阶段。

  与透射傅里叶红外光谱仪相比,漫反射傅里叶红外光谱仪具有如下优点:不需要制样、不改变样品的形状、不会污染样品,不要求样品有足够的透明度或表面光洁度,也不需要破坏样品,不会对样品的外观及性能造成任何损坏,可直接将样品放在样品支架上进行测定,可以同时测定多种组分,这些特点很适合对样品的无损检测,如对珠宝、钻石、纸 币、邮票的真伪进行鉴定,对样品无任何不良作用。

全反射傅里叶红外光谱仪

  20世纪90年代初,衰减全反射(ATR)技术开始应用到红外显微镜上,诞生了全反射傅里叶红外光谱仪。近年来,随着计算机技术和多媒体图视功能的运用,实现了非均匀样品和不平整样品表面的微区无损测量,可以获得官能团和化合物在微区空间分布的红外光谱图像。衰减全反射不需要通过透过样品的信号,而是通过样品表面的反射信号获得样品表层有机成分的结构信息,因此,衰减全反射具有如下特点:

  ①不破坏样品,不需要象透射红外光谱那样要将样品进行分离和制样。对样品的大小,形状没有特殊要求,属于样品表面无损测量。

  ②可测量含水和潮湿的样品。

  ③检测灵敏度高,测量区域小,检测点可为数微米。

  ④能得到测量位置处物质分子的结构信息、某化合物或官能团空间分布的红外光谱图像及微区的可见显微图象。

  ⑤能进行红外光谱数据库检索以及化学官能团辅助分析,确定物资和种类和性质。

  ⑥操作简便,自动化,用计算机进行选点、定位、聚集、测量。

  由于衰减全反射的上述特点,极大地扩大了傅里叶红外光谱仪的应用范围,使许多采用透射红外光谱技术无法制样,或者样品制做过程十分复杂、难度大、而效果又不理想的实验成为可能,采用衰减全反射附件和实验方法,可以获得常规的透射红外光谱技术所不能得到的检测效果。

傅里叶红外光谱仪.jpg

傅里叶红外光谱仪与其他仪器的联用技术

  傅里叶红外光谱仪与其他仪器的联用技术是近代研究发展的重要方向。在现代分析测试技术中,用于复杂试样的微量或痕量组分的分离分析的多功能红外联机检测技术代表了新的发展方向。

  傅里叶红外光谱仪与色谱联用可以进行多组分样品的分离和定性,与显微镜联用可进行微量样品的分析鉴定,与热失重联用可进行材料的热稳定性研究,与拉曼光谱联用可得到红外光谱弱吸收的信息。实践证明,红外光谱联用技术是一种十分有效的实用技术,现已实现联机的有气相色谱-红外、GX液相色谱-红外、超临界流体色谱-红外、薄层色谱-红外、热失重-红外、显微镜-红外及气相色谱-红外-质谱等,这将进一步提高分析仪器的分离分析能力。

  随着傅里叶红外光谱仪技术的发展,远红外、近红外、偏振红外、高压红外、红外光声光谱、红外遥感技术、变温红外、拉曼光谱、色散光谱等技术也相继出现,这些技术的出现使红外成为物质结构和鉴定分析的有效方法。

  近年来,随着计算机技术的发展,红外光谱定性分析实现了计算机检索和辅助光谱解析。概括地说,就是首先将相当数量化合物的红外光谱图,按照一定规则进行编码后,存放在计算机的存储设备中形成谱库,然后,对待分析样品的红外光谱图也进行同样的编码,再以某种计算方法与谱库中存储的数据逐个进行比较,挑选出类似的数据,Z后按类似的程度输出挑选结果,从而达到光谱检索目的。而这也大大减少了光谱解析的工作量。


2005-04-03 浏览次数:2906次
本文来源:https://www.yiqi.com/daogou/detail_3035.html
延伸阅读
  • 红外光谱仪工作原理
    红外光谱仪是光谱仪一种类型,利用物质对不同波长的红外辐射吸收特性,进行结构和化学组成的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。

    04-04

  • 红外光谱仪结构
    红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外色谱仪的结构主要包括了光源、分光系统、样品池以及检测系统四个部分。

    04-04

  • 红外光谱仪类型
    红外光谱仪的应用为各个领域带来了不少的影响和技术支持的同时加快了各行业的研究效率,因此红外光谱仪的保养和保存也变得越来越重要。

    04-04

  • 红外光谱仪的应用
    红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。广泛应用于染织工业、环境科学、生物学、材料科学、高分子化学、催化、煤结构研究、石油工业、生物医学、生物化学、药学、无机和配位化学基础研究、半导体材料、日用化工等研究领域。

    04-04

  • 红外光谱仪选购指南
    红外光谱仪着手进行分析前不仅要了解试样的基本情况及对分析的要求,更重要的是要了解红外光谱仪的基本性能指标,如精密度、灵敏度、检出限、线性范围等。

    04-04

  • 查看更多精彩>>
同类型导购:

傅里叶红外光谱仪产品导购

傅里叶红外光谱仪产品资料

傅里叶红外光谱仪产品问答

傅里叶红外光谱仪产品厂家

最新资讯

看过该文章的人还看了以下文章

官方微信

仪器网微信服务号

扫码获取最新信息


仪器网官方订阅号

扫码获取最新信息

在线客服

咨询客服

在线客服
工作日:  9:00-18:00
联系客服 企业专属客服
电话客服:  400-822-6768
工作日:  9:00-18:00
订阅商机

仪采招微信公众号

采购信息一键获取海量商机轻松掌控