仪器网

欢迎您: 免费注册 仪器双拼网址:www.yiqi.com
首页-资讯-资料-产品-求购-招标-品牌-展会-行业应用-社区-供应商手机版
官方微信
中国仪器网• 行业应用
仪器网/ 行业应用/ 解决方案/ 毛细管流变仪应用文章 Polymer Melts under Uniaxial Elongational Flow: Stress-Optical Behavior from Experiments and Nonequilibrium Molecular Dynamics Computer Simulations

毛细管流变仪应用文章 Polymer Melts under Uniaxial Elongational Flow: Stress-Optical Behavior from Experiments and Nonequilibrium Molecular Dynamics Computer Simulations

点击这里给我发消息
内容节点
概述
实验/设备条件
样品提取
实验/操作方法
实验结果/结论
仪器/耗材清单
ABSTRACT: Tensile stress and birefringence in both real and model amorphous polymer melts have been measured during constant rate uniaxial elongational flow. We focus on investigations where deviations from the linear stress-optical behavior are pronounced. A rate-dependent contribution to the stress which is not directly related to the intramolecular conformations (stress offset) is detected for both types of macromolecular fluids. Independent of the flow history, during relaxation a linear stress-optical behavior is revealed. Nonequilibrium molecular dynamics (NEMD) computer simulations on the multibead anharmonic spring model are shown to provide insight into the molecular mechanisms underlying the viscoelastic behavior: during relaxation the intermolecular interactions become dominant in correlation with linear stress-optical behavior; the stress offset shown to be very similar to the stress arising in the corresponding simple fluid; the total stress can well be approximated by a sum of three parts which are based on single-particle and single-link distribution functions only; the yield point behavior at high elongation rates reflects the transition from affine to nonaffine motion of bonds and is understood without reference to strong inhomogeneities resulting from local plastic strain production[the chemical structure does not influence the qualitative behavior]; distinct microscopic stress contributions under elongation and subsequent relaxation such as inter- and intramolecular, attractive and repulsive, kinetic and potential contributions are resolved.
相关产品
相关解决方案
热门解决方案
最新解决方案
在线留言
官方微信

仪器网微信服务号

扫码获取最新信息


仪器网官方订阅号

扫码获取最新信息

在线客服

咨询客服

在线客服
工作日:  9:00-18:00
联系客服 企业专属客服
电话客服:  400-822-6768
工作日:  9:00-18:00
订阅商机

仪采招微信公众号

采购信息一键获取海量商机轻松掌控