仪器网

欢迎您: 免费注册 仪器双拼网址:www.yiqi.com
首页-资讯-资料-产品-求购-招标-品牌-展会-行业应用-社区-供应商手机版
官方微信
中国仪器网• 行业应用
仪器网/ 行业应用/ 解决方案/ 柱状腔体各种声学共振模式的剪切层动力学研究

柱状腔体各种声学共振模式的剪切层动力学研究

点击这里给我发消息
内容节点
概述
实验/设备条件
样品提取
实验/操作方法
实验结果/结论
仪器/耗材清单
This paper investigates the interaction between the shear layer over a circular cavity and the flow-excited acoustic response of the volume to shear layer instability modes. Within the fluid-resonant category of cavity oscillation, most research has been carried out on rectangular geometries and where cylinders are considered, side branch and Helmholtz oscillators are most common. In these studies, focus is generally restricted to either longitudinal standing waves or to Helmholtz resonance. In practical situations however, where the cavity is subject to a range of flow speeds, many different resonant mode types may be excited. The current work presents a cylindrical cavity design where Helmholtz oscillation, longitudinal resonance and also azimuthal acoustic modes may all be excited upon varying the flow speed. Experiments performed show how lock-on between each of the three fluid-resonances and shear-layer instability modes can been generated. A circumferential array of microphones flush mounted with the internal surface of the cavity wall was used to decompose the acoustic pressure field into acoustic modes and has verified the excitation of higher order azimuthal modes by the shear layer. One of these interior pressure signals was also used to provide a phase signal for averaging flow field measurements of the shear layer acquired using PIV. Observation of the PIV images provides insight into these acoustically coupled oscillations. 德国LaVision PIV/PLIF粒子成像测速场仪 Imager sCMOS PIV相机
相关产品
相关解决方案
热门解决方案
最新解决方案
在线留言
官方微信

仪器网微信服务号

扫码获取最新信息


仪器网官方订阅号

扫码获取最新信息

在线客服

咨询客服

在线客服
工作日:  9:00-18:00
联系客服 企业专属客服
电话客服:  400-822-6768
工作日:  9:00-18:00
订阅商机

仪采招微信公众号

采购信息一键获取海量商机轻松掌控