仪器网-专业分析仪器,检测仪器平台,实验室仪器设备交易网
X射线 X射线能谱分析和俄歇电子能谱

X射线能谱分析和俄歇电子能谱


X射线能谱分析介绍

 

 

各种元素具有自己的X射线特征波长,特征波长的大小则取决于能级跃迁过程中释放出的特征能量△E,X射线能谱分析法就是利用不同元素X射线光子特征能量不同这一特点来对物质进行成分分析的方法。

 

X射线能谱分析过程、原理

 

X射线光子进入检测器后,在Si(Li)晶体内激发出一定数目的电子空穴对。产生一个空穴对的Z低平均能量ε是一定的(在低温下平均为3.8ev),而由一个X射线光子造成的空穴对的数目为N=△E/ε,因此,入射X射线光子的能量越高,N就越大。利用加在晶体两端的偏压收集电子空穴对,经过前置放大器转换成电流脉冲,电流脉冲的高度取决于N的大小。电流脉冲经过主放大器转换成电压脉冲进入多道脉冲高度分析器,脉冲高度分析器按高度把脉冲分类进行计数,这样就可以描出一张X射线按能量大小分布的图谱。

 

 

 

X射线能谱相关概念

 

 

检出角:

 

理论上该角度越大越好。目前的角点检测算法可归纳为3类:基于灰度图像的角点检测、基于二值图像的角点检测、基于轮廓曲线的角点检测。角点是图像很重要的特征,对图像图形的理解和分析有很重要的作用。对灰度图像、二值图像、边缘轮廓曲线的角点检测算法进行综述,分析了相关的算法,并对各种检测算法给出了评价。

 

固体角:

 

也叫立体角,决定了信号量的大小,该角度越大越好。固体角常用字母Ω表示,是一个物体对特定点的三维空间的角度,是平面角在三维空间中的类比。它描述的是站在某一点的观察者测量到的物体大小的尺度。例如,对于一个特定的观察点,一个在该观察点附近的小物体有可能和一个远处的大物体有着相同的立体角。

 

立体角:  以观测点为球心,构造一个单位球面;任意物体投影到该单位球面上的投影面积,即为该物体相对于该观测点的立体角。

因此,立体角是单位球面上的一块面积,这和“平面角是单位圆上的一段弧长”类似。

 

能量分辨力:

 

目前Z高级别的能谱仪分辨力可达121eV。能量分辨力是指,针对两种不同能量的入射粒子,探测器所能够测定Z小的能量间隔。能量分辨率定义为全能峰半高宽(FWHM)与峰位能量的比值,它表征了探测器对不同能量射线的辨能力,因此是谱仪探测器Z重要的性能指标。实际测得的能量分辨率与探测器输出信号的产生、传递、转换、放大与收集等过程有关。若有用信号越强,干扰因素越弱,则能量分辨率越好。

 

 

X射线能谱仪简介

 

 

能谱仪是利用X射线能谱分析法来对材料微区成分元素种类与含量分析的仪器,常常配合扫描电子显微镜与透射电子显微镜的使用。

 

X射线能谱仪应用范围包括

 

1、金属材料的相分析、成分分析和夹杂物形态成分的鉴定;

2、高分子、陶瓷、混凝土、生物、矿物、纤维等无机或有机固体材料分析;

3、可对固体材料的表面涂层、镀层进行分析,如:金属化膜表面镀层的检测;

4、金银饰品、宝石首饰的鉴别,考古和文物鉴定,以及刑侦鉴定等领域;

5、进行材料表面微区成分的定性和定量分析,在材料表面做元素的面、线、点分布分析。

 

 

X射线光电子能谱分析

 

 

X射线光电子能谱分析(X-ray photoelectron spectroscopy, XPS)是用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来。被光子激发出来的电子称为光电子,可以测量光电子的能量,以光电子的动能为横坐标,相对强度(脉冲/s)为纵坐标可做出光电子能谱图,从而获得待测物组成。XPS主要应用是测定电子的结合能来实现对表面元素的定性分析,包括价态。 X射线光电子能谱因对化学分析Z有用,因此被称为化学分析用电子能谱

 

受激发射(stimulated emission)是产生激光的重要步骤。电子自高能态受到光的激发而跃迁到低能态,同时发射与激发光的相位、偏振方向和传播方向相同的光,称为受激发射。

 

 

什么是俄歇电子能谱

 

 

俄歇电子能谱简称AES,是一种表面科学和材料科学的分析技术。因此技术主要借由俄歇效应进行分析而命名之。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逃脱离开原子,这一连串事件称为俄歇效应,而逃脱出来的电子称为俄歇电子。1953年,俄歇电子能谱逐渐开始被实际应用于鉴定样品表面的化学性质及组成的分析。其特点在俄歇电子来自浅层表面,仅带出表面的资讯,并且其能谱的能量位置固定,容易分析。

 

俄歇电子能谱基本物理原理

 

入射电子束和物质作用,可以激发出原子的内层电子形成空穴。外层电子填充空穴向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。

 

入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。

 

 

 

如果电子束将某原子K层电子激发为自由电子,L层电子跃迁到K层,释放的能量又将L层的另一个电子激发为俄歇电子,这个俄歇电子就称为KLL俄歇电子。同样,LMM俄歇电子是L层电子被激发,M层电子填充到L层,释放的能量又使另一个M层电子激发所形成的俄歇电子。

 

俄歇跃迁

 

对于自由原子来说,围绕原子核运转的电子处于一些不连续的"轨道 ”上,这些 “ 轨道 ” 又组成K、L、M、N 等电子壳层。 我们用“ 能级 ”的概念来代表某一轨道上电子能量的大小。由于入射电子的激发,内层 电子被 电离, 留下一个空穴。 此时原子处于激发态, 不稳定。 较高能级上的一个电子降落到内层能级的空位中去,同时放出多余的能量。 这些能量可以作为光子发射特征射线,也可以转移给第三个电子并使之发射出来。 这就是俄歇电子。 通常用射线能级来标志俄歇跃迁。 例如KL1L2俄歇电子就是表示ZK能级被电离,L1能级的电子填入K能级空位,多余的能量传给了L2能级上 的一个电子,并使之发射出来。

 

能量公式

 

对于原子序数为Z的原子,俄歇电子的能量可以用下面经验公式计算:

EWXY(Z)=EW(Z)-EX(Z)-EY(Z+ Δ)-Φ

式中, EWXY(Z):原子序数为Z的原子,W空穴被X电子填充得到的俄歇电子Y的能量。

EW(Z)-EX(Z):X电子填充W空穴时释放的能量。

EY(Z+Δ):Y电子电离所需的能量。

 


2018-06-06  浏览次数:4207
本文来源:https://www.yiqi.com/citiao/detail_668.html
  • 最新资讯
  • X射线能谱
  • 俄歇电子能谱
  • X射线
官方微信

仪器网微信服务号

扫码获取最新信息


仪器网官方订阅号

扫码获取最新信息

在线客服

咨询客服

在线客服
工作日:  9:00-18:00
联系客服 企业专属客服
电话客服:  400-822-6768
工作日:  9:00-18:00
订阅商机

仪采招微信公众号

采购信息一键获取海量商机轻松掌控