我要发布
仪器网/ 仪器社区/ 新技术!增材减材一体化新系统,不同工艺无缝切换,加工精度优于

新技术!增材减材一体化新系统,不同工艺无缝切换,加工精度优于

Quantum Design中国子公司    2023-03-23       浏览 175 次

增材减材复合神器


随着材料加工、微纳机电、微流控、新型医疗设备、微电子器件等领域的发展,对不同材料的精细激光加工的需求越来越多。借助激光加工技术不仅可以对材料进行减材制造,还可以对特定材料进行增材制造。近日,Quantum Design中国公司引进了Femtika公司设计并生产的飞秒激光微纳加工综合系统-Laser Nanofactory,以满足科研或工业界对精细激光加工的需求。Laser Nanofactory是一款集增材与减材制造于一体的综合微纳加工系统。Laser Nanofactory与传统的微纳3D打印设备相比不仅可用于光子学聚合物微纳结构的加工,还可以用于石英,陶瓷,玻璃和金属等材料从毫米到微米尺度的精确加工。得益于Femtika国际领先的飞秒激光技术,Laser Nanofactory加工速度可高达50 mm/s,加工精度优于100 nm,加工过程中无拼接痕迹。Laser Nanofactory可以提供不同功率的激光,满足您从工业生产到科研探索的多方面需求。



Femtika飞秒激光微纳加工综合系统-Laser Nanofactory

 

精选案例


2.1多光子聚合(Multi-Photon Polymerization)微纳加工


光学微结构


左图为菲涅尔微透镜,右图为微棱镜

 

生物医药

左图为微针阵列,右图为生物用微支架

 

MEMS/传感器

左图为可活动的微锁链,右图为微型弹簧

 

2.2激光选择性刻蚀


微流控加工

左图为在熔融石英玻璃上制备的微流道,右图为在玻璃中刻蚀的特斯拉阀

 

MEMS

左图为微型间歇齿轮,右图为特殊3D喷嘴

 

2.3激光刻蚀


金属加工

左图为在金属上制备直径为30 μm的微洞,右图为长度500 μm的二维码

 

表面改性

左图为在金属表面上制备的疏水微结构,右图为在金属表面上制备的亲水微结构


利用飞秒激光在钛金属表面产生不同厚度的氧化层

 

2.4 综合加工应用


利用激光刻蚀制备出较大的微流道,再通过多光子聚合技术在流道的特定位置形成微滤网

 

已有用户




发表文章

[1] A. Butkutė, G. Merkininkaitė, T. Jurkšas, J. Stančikas, T. Baravykas, R. Vargalis, T. Tičkūnas, J. Bachmann, S. Šakirzanovas, V. Sirutkaitis, and L. Jonušauskas, “Femtosecond Laser Assisted 3D Etching Using Inorganic-Organic Etchant”, Materials 2022,15, 2817, (2022).

[2] G. Kontenis, D. Gailevičius, N. Jimenez, and K. Staliunas, “Optical Drills by Dynamic High‑Order Bessel Beam Mixing”, Phys. Rev. Applied 17, 034059, (2022).

[3] D. Čereška, A. Žemaitis, G. Kontenis, G. Nemickas, and L. Jonušauskas, “On‑Demand Wettability via Combining fs Laser Surface Structuring and Thermal Post-Treatment”, Materials 2022,15, 2141, (2022).

[4] A. Butkutė, and L. Jonušauskas, “3D Manufacturing of Glass Microstructures Using Femtosecond Laser”,Micromachines 2021,12, 499, (2021).

[5] D. Andrijec, D. Andriukaitis, R. Vargalis, T. Baravykas, T. Drevinskas, O. Kornyšova, A. Butkutė, V. Kaškonienė, M. Stankevičius, H. Gricius, A. Jagelavičius, A. Maruška, and L. Jonušauskas, “Hybrid additive subtractive femtosecond 3D manufacturing of nanofilter based microfluidic separator”, Applied Physics A (2021).

[6] D. Gonzalez-Hernandez, S. Varapnickas, G. Merkininkaitė, A. Čiburys, D. Gailevičius, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas,”Laser 3D Printing of Inorganic Free‑Form Micro-Optics”, Photonics 2021,8, 577, (2021).

[7] D. Andriukaitis, A. Butkutė, T. Baravykas, R. Vargalis, J. Stančikas, T. Tičkūnas, V. Sirutkaitis, and L. Jonušauskas, “Femtosecond Fabrication of 3D Free-Form Functional Glass Microdevices: Burst-Mode Ablation and Selective Etching Solutions”, 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, (2021).

[8] A. Butkutė, T. Baravykas, J. Stančikas, T. Tičkūnas, R. Vargalis, D. Paipulas, V. Sirutkaitis, and L. Janušauskas, “Optimization of selective laser etching (SLE) for glass micromechanical structure fabrication”, Optical Express 23487, Vol. 29, No. 15, 19.07.2021, (2021).

[9] A. Maruška, T. Drevinskas, M. Stankevičius, K. Bimbiraitė-Survilienė, V. Kaškonienė, L. Jonušauskas, R. Gadonas, S. Nilsson, and O. Kornyšova, “Single-chip based contactless conductivity detection system for multi-channel separations”, Anal. Methods, 2021,13,141–146, (2021).

[10] L. Bakhchova, L. Jonušauskas, D. Andrijec, M. Kurachkina, T. Baravykas, A. Eremin, and U. Steinmann,“Femtosecond Laser-Based Integration of Nano-Membranes into Organ-on-a-Chip Systems”, Materials 2020, 13, 3076 (2020).

[11] T. Tičkūnas, D. Paipulas, and V. Purlys, “Dynamic voxel size tuning for direct laser writing,” Opt. Mater. Express 10, 1432-1439 (2020).

[12] T. Tičkūnas, D. Paipulas, and V. Purlys, “4Pi multiphoton polymerization”, Appl. Phys. Lett. 116, 031101 (2020).

[13] L. Jonušauskas, T. Baravykas, D. Andrijec, T. Gadišauskas, and V. Purlys, “Stitchless support-free 3D printing of free-form micromechanical structures with feature size on-demand”, Sci Rep 9, 17533 (2019).

[14] S. Gawali. D. Gailevičius, G. Garre-Werner, V. Purlys, C. Cojocaru, J. Trull, J. Montiel-Ponsoda, and K. Staliunas, “Photonic crystal spatial filtering in broad aperture diode laser”, Appl. Phys. Lett. 115, 141104 (2019).

[15] L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, and M. Malinauskas, “Mesoscale laser 3D printing,” Opt. Express 27, 15205-15221 (2019).

[16] L. Jonušauskas, D. Mackevičiūtė, G. Kontenis and V. Purlys, “Femtosecond lasers: the ultimate tool for high precision 3D manufacturing”, Adv. Opt. Technol., 20190012, ISSN (Online) 2192-8584, (2019).

[17] L. Grineviciute, C. Babayigit, D. Gailevicius, E. Bor, M. Turduev, V. Purlys, T. Tolenis, H. Kurt, and K. Staliunas,“Angular filtering by Bragg photonic microstructures fabricated by physical vapour deposition”, Appl. Surf. Sci., 481, 353-359 (2019).

[18] D. Gailevičius, V. Padolskytė, L. Mikoliūnaitė, S. Šakirzanovas, S. Juodkazis, and M. Malinauskas, “Additive manufacturing of 3D glass-ceramics down to nanoscale resolution”, Nanoscale Horiz., 4, 647-651 (2019).

[19] E. Yulanto, S. Chatterjee, V. Purlys, and V. Mizeikis, “Imaging of latent three-dimensional exposure patterns created by direct laser writing in photoresists”, Appl. Surf. Sci., 479, 822-827 (2019).

[20] L. Jonušauskas, S. Juodkazis, and M. Malinauskas, “Optical 3D printing: bridging the gaps in the mesoscale”, J. Opt., 20(05301) (2018).

[21] E. Skliutas, S. Kasetaite, L. Jonušauskas, J. Ostrauskaite, and M. Malinauskas “Photosensitive naturally derived resins toward optical 3-D printing,” Opt. Eng. 57(4), 041412 (2018).

[22] L. Jonušauskas, S. Rekštyte, R. Buividas, S. Butkus, R. Gadonas, S. Juodkazis, and M. Malinauskas,“Hybrid subtractive-additive-welding microfabrication for lab-on-chip applications via single amplified femtosecond laser source,” Opt. Eng. 56(9), 094108 (2017).



最新主题
相关版块
我要评论
X您尚未登录
账号登录
X您尚未登录
手机动态密码登录
X您尚未登录
扫码登录
官方微信

仪器网微信服务号

扫码获取最新信息


仪器网官方订阅号

扫码获取最新信息

在线客服

咨询客服

在线客服
工作日:  9:00-18:00
联系客服 企业专属客服
电话客服:  400-822-6768
工作日:  9:00-18:00
订阅商机

仪采招微信公众号

采购信息一键获取海量商机轻松掌控