
- 2025-03-28 15:22:08高光谱成像系统扫描
- 高光谱成像系统扫描是一种先进的光学成像技术,它通过捕捉物体在连续光谱范围内的图像,生成具有数百个狭窄光谱波段的图像数据集。这些数据集提供了关于物体表面材质、化学成分及物理特性的详细信息。该技术广泛应用于农业、环境监测、地质勘探、食品安全等领域,能够实现目标的精准识别与分类,为科学研究与实际应用提供强有力的数据支持。
资源:3083个 浏览:3次展开
高光谱成像系统扫描相关内容
高光谱成像系统扫描产品
产品名称
所在地
价格
供应商
咨询
- 无人机载高光谱成像系统
- 国内 上海
- 面议
-
上海昊量光电设备有限公司
售全国
- 我要询价 联系方式
- 便携式智能高光谱成像系统GaiaSmart
- 国内 上海
- 面议
-
上海泽泉科技股份有限公司
售全国
- 我要询价 联系方式
- LabScanner实验室高光谱成像系统
- 国外 欧洲
- 面议
-
北京易科泰生态技术有限公司
售全国
- 我要询价 联系方式
- 便携式高光谱成像系统GaiaField
- 国内 上海
- 面议
-
上海泽泉科技股份有限公司
售全国
- 我要询价 联系方式
- PhenoTron®-HSI多功能高光谱成像系统
- 国内 陕西
- 面议
-
北京易科泰生态技术有限公司
售全国
- 我要询价 联系方式
高光谱成像系统扫描问答
- 2021-09-08 15:00:16Lambda镀膜式高光谱成像系统解析
- Lambda镀膜式高光谱成像系统解析 写在前面的还记得之前的科普文章《高光谱在水质检测中的重要性》吗?其中说了一项最新、重要的技术,“马赛克”镀膜技术。现在这款产品来了,谱视界近日推出Lambda镀膜式高光谱成像系统,快跟随主页妹一起来一探究竟吧! Lambda高光谱成像系统简介高光谱成像技术是近二十年来发展起来的基于多窄波段的影像数据技术,其最突出的应用是遥感探测领域,并在越来越多的民用领域有着更大的应用前景。它集中了光学、光电子学、电子学、信息处理、计算机科学等领域的先进技术,是传统的二维成像技术和光谱技术有机的结合在一起的一门新兴技术。 高光谱成像技术具有多波段(可达上百个波段)、波段窄(≤10-2λ)、光谱范围广(200-2500nm)和图谱合一等特点。优势在于采集到的图像信息量丰富,识别度较高和数据描述模型多。由于物体的反射光谱具有“指纹”效应,不同物不同谱,同物一定同谱的原理来分辨不同的物质信息。物体的光谱特性与其内在的理化学特性紧密相关,由于物质成分和结构的差异就造成物质内部对不同波长光子的选择性吸收和发射。完整而连续的光谱曲线可以更好地反映不同物质间这种内在的微观差异,这也正是成像光谱技术实现地物精细探测的物理基础。渐变薄膜式高光谱相机是将不同波段的渐变薄膜镶镀在面阵探测器上,可同时、快速获取光谱和影像信息的无损检测分析仪器。Lambda高光谱相机利用渐变镀膜技术,无需传统的光栅分光模块,使得在光谱覆盖范围内的数十或数百条光谱波段对目标物体连续成像。在获得物体空间特征成像的同时,也获得了被测物体的光谱信息。Lambda主要是针对户外或较大物体的远距离成像测试以及一些需要便携操作的应用。系统结构包括:面阵探测器、驱动电源、运动控制模块、数据采集模块等集成于一体,大大减小了系统的体积与重量,外观简洁,操作方便。实现了自动曝光、自动匹配扫描速度,同时可以通过携带的辅助摄像功能对监测范围进行确定。在数据处理方面实现数据的预处理和数据选择性的导出、不同的数据校准功能、图像的等功能。 镀膜式高光谱成像原理基于线性渐变滤光片的成像光谱仪的工作原理图 Lambda镀膜式高光谱成像系统技术规格 相机参数仪器型号Lambada-VNLambada-VNSLambada-Nir光谱范围420~1000nm420~1000nm1100~1660nm光谱分辨率10nm10nm20nm光谱通道数>100>10032/64标配镜头焦距(mm)25(其它焦距可选*1)25(其它焦距可选*1)30(其它焦距可选*2)工作距离(mm)150-∞150-∞150-∞视场角19°23°18°探测器2048*2048CMOS2048*2048sCMOS640*512InGaAs FPA像素数(空间维*扫描维)1600*1200(1X)800*600(2X)1600*1200(1X)800*600(2X)640*512像素尺寸5.5*5.5μm6.5*6.5μm15*15μm数字输出10bit12bit14bit帧数90fps45fps50fps曝光时间范围28μs-1s10μs-10s10μs-1s内置电脑接口USB3.0+HDMI镜头接口C-Mount系统电源DC 16.8V内置微型处理器I7处理器、16G运存、256GSSD内置电池65Wh65Wh65Wh系统功耗45W60W60W*1:16mm,35mm,50mm,其它可咨询 *2:9mm,15mm,22mm,56mm,其它可咨询 相机功能●可与标准C接口的成像镜头或显微镜直接集成,实现光谱影像(Mapping)的快速采集。●自动曝光、自动扫描速度匹配、自动采集并保存数据●可实现数据实时校准及模型运算功能(内置水体、植被等超过25个指数模型)●辅助取景摄像头实现对拍摄区域的监控●内置电池●数据预览及校正功能:辐射度校正、反射率校正、区域校正、镜头校准、均匀性校准●镜头可更换●数据格式完美兼容Envi、SpecSight等数据分析软件●目标光谱实时匹配搜索功能●内置WiFi支持Android智能手机、ipad、iphone无线遥控●千兆以太网:支持远距图像传输与遥控操作 Lambd高光谱成像系统实体图 Lambda数据采集及光谱分析 应用领域介绍 户外农作物长势监测将Lambda高光谱成像系统放置于三脚架或高架平台上,用于监测农作物的长势,如农作物的氮含量、叶绿素、生物量等,也可用于监测农作物的病害及土壤肥力情况,从而为农业精细化管理作技术支撑。 不同氮素处理作物的光谱反射率曲线 河流水质状况实时检测将Lambda高光谱成像系统放置于水质检测搭载平台上,如三脚架、高塔等,可实时检测水质参数指标,如总磷、总氮、叶绿素a、悬浮物、PH值、化学需氧量、氨氮、溶解氧等10余种水质指标。 Lambda实时监测水质参数 塑料分选将Lambda高光谱成像系统搭载于配备有光源的暗箱系统,可用于不同塑料种类的分选,如PE、PP、PS、PC、PA、PU、PET、PVC、POM和ABS等。 Lambda用于塑料分选 真伪 钞的鉴定利用Lambda高光谱成像系统获取真假 钞的高光谱图像,可通过光谱分析法和纹理分析法鉴定真伪 钞。 Lambda高光谱成像系统鉴定真伪 钞 室内暗箱树种鉴定及长势情况采集不同树种的叶片放置于室内暗箱系统,用Lambda高光谱成像系统获取其高光谱影像数据,通过光谱分析法和纹理分析法,可区分不同树种的叶片和叶片的农学指标分布情况,为航拍区分不同树种作理论依据。 Lambda进行树叶种类区别及生物量、叶片氮含量监测 果蔬分选随着人们生活水平的提高,消费者越来越关注果蔬的品质安全问题。如造成水果表面出现黑白斑的内部腐烂、水果因运输等原因造成的碰伤、损伤等,从而严重影响消费者的身体健康。因此水果黑白斑、碰伤损伤、水果成熟度等快速有效的识别具有重大意义。基于Lambda高光谱成像系统可用于检测水果的损伤及糖度等。 Lambda高光谱成像系统快速识别水果损伤区域 生物医学Lambda高光谱成像系统在生物医学领域可用于舌苔检测、智齿检查、皮肤检测、黑痣识别等领域。 图依次为 k0074、k0082 和 k0090 三位患者舌苔含水率分布图。从图可知,K0074 含水率较高,口水较多,判断该患者无精神,是慢性肾病的表现之一。 烟丝种类、杂质判别Lambda高光谱成像系统在烟草行业可用于烟丝生化成分的检测、烟丝种类的判别、烟丝杂质的识别等。 Lambda检测烟丝生化成分、烟丝种类判别、杂质识别等
739人看过
- 2025-02-14 14:45:15凝胶成像系统介绍图怎么看?
- 凝胶成像系统介绍图 凝胶成像系统作为生物医学领域中重要的实验工具之一,广泛应用于基因组学、蛋白质组学等多个科研领域,帮助研究人员高效、准确地分析和可视化生物样本中的核酸、蛋白质以及其他分子。这篇文章将介绍凝胶成像系统的工作原理、应用范围及其在科研中的重要性,同时通过详细的图解帮助读者更好地理解这一系统的核心功能和优势。 凝胶成像系统的基本原理 凝胶成像系统的核心技术是利用凝胶电泳分离样本中的分子,通过特定的染色剂使得分子在紫外线或可见光下显现,从而达到可视化效果。凝胶电泳是一种常用的分离技术,利用不同分子在电场中的迁移速度差异进行分离。通过凝胶成像系统,研究人员能够清晰地观察到不同大小、不同性质的分子带,从而进行进一步的分析。 凝胶成像系统的工作原理主要包括三个步骤。研究人员将样本加到凝胶孔中,并在电场作用下进行电泳分离。使用染料或探针对目标分子进行标记,这些标记物在特定的光源下会发出可见的信号。利用成像系统捕捉信号并生成图像,研究人员可根据图像的结果进行定量分析、分子比对等操作。 凝胶成像系统的应用领域 凝胶成像系统在生命科学研究中有着广泛的应用。常见的应用场景包括DNA、RNA和蛋白质的分析。例如,在基因研究中,凝胶成像系统能够清晰地展示PCR产物的大小、浓度等信息,为基因扩增实验提供重要依据。对于蛋白质研究,通过Western Blot实验,凝胶成像系统也能够有效地展示蛋白质的分子量及表达情况。 凝胶成像系统还被应用于免疫学、分子诊断、食品安全检测等多个领域。随着技术的不断进步,凝胶成像系统的功能也不断拓展。高分辨率、高清成像、自动化分析等特点使得这一系统成为科研实验室中不可或缺的工具。 凝胶成像系统的优势 凝胶成像系统具备许多其他分析方法无法比拟的优势。凝胶成像系统具有较高的分辨率和灵敏度,能够检测到微小的分子差异,这对于科研中的分析至关重要。成像系统通常配备有先进的软件支持,能够自动化处理实验数据并生成图像,极大地提高了工作效率和实验的可靠性。凝胶成像系统的操作简便,通常不需要复杂的操作即可完成数据的采集和分析,降低了实验的难度和时间成本。 凝胶成像系统凭借其高效、的特点,已经成为生命科学研究中不可或缺的工具。无论是在基因组学研究、蛋白质分析,还是在临床诊断和食品检测等领域,凝胶成像系统都展现出了极大的应用潜力。 随着技术的不断进步和市场需求的不断增长,凝胶成像系统未来有望实现更高性能、更智能化的提升。对于科研人员来说,掌握这一工具的使用技巧和数据分析方法,将有助于提升实验的质量和效率,推动科学研究的深入发展。
83人看过
- 2025-02-18 14:30:11骨髓细胞成像系统步骤有哪些?
- 骨髓细胞成像系统步骤 骨髓细胞成像技术是医学研究中重要的一部分,尤其在血液学和肿瘤学领域,能够为我们提供详细的细胞级图像,帮助科研人员观察骨髓中的细胞分布、形态和功能变化。通过成像系统,我们可以更准确地诊断各种血液疾病,包括白血病、贫血等。这篇文章将详细介绍骨髓细胞成像系统的步骤,从准备工作到成像操作,以及后期分析的流程,旨在为广大研究人员提供一套全面、系统的操作指南,提升实验效率与成像质量。 骨髓细胞成像系统的准备 在开始骨髓细胞成像之前,首先需要做好充分的准备工作。这些准备步骤对于确保实验的顺利进行至关重要。准备好样本。骨髓样本通常通过骨髓穿刺获得,样本应在采集后迅速进行处理。样本需要通过合适的固定方法处理,以确保细胞结构不会在后续操作过程中遭到损坏。常用的固定液体包括福尔马林或乙醇,固定后需要在显微镜载玻片上制备切片,确保切片的厚度和质量适合成像需求。 确保成像设备的正常运转。骨髓细胞成像系统一般采用荧光显微镜或共聚焦显微镜等先进的成像设备。在设备的准备阶段,检查显微镜的光源、镜头、激光等功能是否正常,确保能够清晰地观察细胞的细节。 骨髓细胞成像的操作步骤 一旦准备工作完成,便可进入骨髓细胞的成像阶段。成像的步是将处理好的切片放置在显微镜的载物台上。根据实验需求,可以选择适合的染色方法,如免疫荧光染色。免疫荧光染色能够帮助研究人员标记出特定类型的细胞或分子,便于在显微镜下进行清晰观察。 启动成像系统,调节显微镜的光学设置。为获得佳成像效果,研究人员需要根据细胞样本的特性调整成像的光源强度、曝光时间、焦距等参数。特别是在使用共聚焦显微镜时,焦距的微调对于获得细胞的三维图像至关重要。 骨髓细胞成像的图像处理与分析 图像采集后,接下来的任务是对图像进行处理与分析。这一阶段通常包括图像去噪、对比度调整、三维重建等步骤。通过图像处理软件,可以将不同层次的图像合成三维模型,帮助科研人员更直观地观察细胞分布和形态变化。 图像分析也可以通过自动化算法进行,帮助快速识别和分类不同类型的细胞。在一些复杂的病例中,基于成像的分析能够揭示细胞之间的微小差异,甚至有助于早期发现病变区域。 注意事项与挑战 尽管骨髓细胞成像系统能够提供高度精确的细胞级图像,但在操作过程中仍然有一些注意事项。样本的质量直接影响成像结果,任何制备过程中的疏忽都可能导致成像效果不佳。成像设备的调节需要经验丰富的操作人员,过度曝光或者不当的染色可能导致图像失真,影响数据分析的准确性。 随着成像技术的不断发展,自动化程度和数据处理能力也在不断提升。利用人工智能技术辅助图像分析,能够进一步提高细胞成像的效率和准确性,这也是未来骨髓细胞成像系统发展的趋势。 结语 骨髓细胞成像技术通过系统的操作步骤为血液疾病的研究提供了极其重要的支持。从样本准备、成像操作到图像处理分析,每个步骤都需要精确执行,以确保研究结果的可靠性。随着成像技术和数据分析方法的不断进步,骨髓细胞成像系统将在医学研究和临床诊断中发挥越来越重要的作用。
50人看过
- 2023-01-10 13:08:36高光谱遥感数据处理系列(一)高光谱数据读取与可视化
- 高光谱遥感数据处理系列(一)地表反射的太阳辐射包含着丰富的信息,从太阳外层大气的吸收到地球大气的吸收,经过与地物的相互作用反射回大气,最 终被传感器捕获。高光谱遥感可以在每个像元获取高分辨率的光谱数据,这些光谱信息提供了一种理解事物的新的维度。下图展示了几种典型地物的光谱。可以看出不同地物展现出显著不同的光谱特征。除此之外,同种地物在不同状态下,也可能在特定波段展现出显著不同的光谱特征。通过比对光谱数据,可以实现对地物区分,状态区分,异常监测等难以通过传统遥感手段实现的应用。高光谱遥感被广泛应用于农林业、矿业、环境、保险、等领域。太阳辐射与典型地物反射率通常彩色影像有红绿蓝三个波段,多光谱影像有几到十几个波段,而高光谱影像有着几十到上百个波段。波段的增加除了提高了信息量,还使得数据量成比例增加。这种数据量对计算机的性能提出了较高的要求,更多的是要求对处理者新的思路和方法。在接下来的文章中,我们将详细介绍高光谱数据的处理流程与方法,希望能在此过程中给读者以新的思考。Hyperspectral light sheet microscopy | Nature CommunicationsENVI (The Environment for Visualizing Images) 是美国Exelis Visual Information Solutions 公司的旗舰产品。它是由遥感领域的科学家采用交互式数据语言IDL (Interactive Data Language) 开发的遥感图像处理软件。ENVI已经广泛应用于科研、环境保护、气象、石油矿产勘探、农业、林业、医学、国防&安全、地球科学、公用设施管理、遥感工程、水利、海洋、测绘勘察和城市与区域规划等领域。双击ENVI图标打开ENVI软件,可以看到ENVI软件的主界面由以下六个部分组成:①菜单栏、②工具栏、③图层管理窗格、④图像显示部分、⑤工具箱、⑥状态栏。ENVI软件的布局如图所示,首先点击 依次点击①菜单栏->File->Open,在弹出的对话框中选取所需要的文件, 一般的ENVI文件由两部分组成,文件本体和头文件(.hdr)。文件本体记录了文件的数据信息,而头文件中记录了关于这些数据信息的描述。使用记事本文件可以直接打开hdr文件,可以看到其中包括了:操作记录Samples:栅格列数Lines:栅格行数Bands:波段数Header offset:文件开头到实际数据起始位置的偏移量File type:文件类型Data type:数据存储类型,用数字表示bit位数Interleave:存储顺序Map Info:图像采用的投影系统参数,坐标系统及单位Coordinate System String:详细的坐标系统信息Wavelength:每个波段所对应的波长两个文件应该放在同一目录下面,ENVI在读取时会自动进行关联。 任选其中一个文件都可以打开该文件,但是ENVI对两个文件的处理方式有所不同。如果选择.hdr文件,ENVI会直接载入显示文件的第 一个波段,如下图所示。使用鼠标滚轮可以对图像进行缩放操作,使用②工具栏中的工具可以对图像进行拖动缩放等一系列操作。加载成功的图像会显示在③图层管理区,通过点击图像前面的勾选框来控制图像在④图像显示区的显示与否。使用如果打开文件本体,ENVI会弹出Data Manager窗口 该窗口包含三个部分,分别是①波段信息、②文件信息、③RGB波段选取。①中展示了所有波段的名称,②中是经过处理后的头文件信息,③是进行RGB合成的波段选取,点击三种颜色的方框后,在①中单击选择波段,选择完成后点击Load Data。如果只想要显示一个波段的灰度影响可以在①中选中目标波段后直接点击Load Greyscale。RGB 合成象素值的彩色图,就是将三个波段的数据分别通过红、绿、蓝三个通道加载,然后进行渲染。将多波段影像数据添加到地图中之后,可使用多波段栅格数据集中的任意三个可用波段的组合来创建 RGB 合成图。与仅处理一个波段相比,通过将多个波段共同显示为RGB 合成图通常可从数据集收集到更多信息。来源:简书 通常我们选取650nm、550nm和450nm分别赋给RGB通道进行合成以获得最 佳的显示效果。显示效果如下图:在②工具栏中选择按钮,ENVI会在图上显示框标,并弹出光谱特征(Spectral Profile)窗口。光谱特征窗口中显示了框标中心白点所在像元的光谱曲线。如下图所示:点击光谱特征窗口中的 ,可以对光谱曲线进行一些操作,如平滑,计算NDVI,显示RGB波段所在位置等:小结 本文介绍了高光谱影像的基本原理以及简单的读取及可视化操作。使用ENVI软件可以实现大部分简单的高光谱数据处理。在接下来的教程中,我们将从植被指数提取、高光谱滤波、非监督分类与监督分类等方面介绍ENVI软件的使用。除此以外,我们还将介绍基于Python的高光谱处理,从编程角度介绍高光谱相关知识,以及高光谱数据与大数据处理的结合。参考:【1】百度百科【2】 www.jianshu.com/p/d0765ee89b86
381人看过
- 2023-05-26 10:20:02FluorCam-Pro植物多光谱荧光成像系统
- FluorCam-Pro植物多光谱荧光成像系统是FluorCam叶绿素荧光成像技术的最 新高级扩展产品。此系统既可用于PAM脉冲调制式叶绿素荧光动态成像分析,又可用于UV紫外光对植物叶片激发产生的多光谱荧光成像测量分析,还可选配滤波器组对GFP、RFP、YFP、SYBR Green等荧光蛋白和荧光染料进行稳态荧光成像测量。测量对象包括叶片、果实、花朵、整株拟南芥或其他小型植株、苔藓、微藻、大型藻类乃至特定的动物样品。应用领域:植物光合生理生态植物逆境胁迫生理与易感性植物初级代谢与次级代谢植物表型组学成像分析(Phenotyping)作物遗传育种与抗性筛选种子萌发与活力监测转基因植株筛选功能特点:多激发光-多光谱荧光成像技术:通过两种以上不同波长的光源激发植物样品中不同的发色团发出荧光并进行成像检测,即为多激发光多光谱荧光成像技术。植物的多光谱荧光主要包括叶绿素荧光、UV紫外光激发多光谱荧光和荧光蛋白荧光FluorCam-Pro无需更换任何配件即可同步实现多激发光-多光谱荧光成像功能:PAM脉冲调制式叶绿素荧光成像紫外激发F440、F520、F690、F740多光谱荧光成像GFP、RFP、YFP等常用荧光蛋白成像可根据用户需要定制荧光蛋白或荧光染料成像,如BFP、CFP、SYBR Green、DAPI等可对黄酮、花青素含量进行定量测量可进行自动重复成像测量和无人值守监测,可设置实验程序(Protocols)自动循环成像测量,成像测量数据自动按时间日期存入计算机(带时间戳)测量样品为各种活体植物样品,包括叶片、花卉、果实、整株拟南芥或其他小型植物、微藻(包括液滴、多孔板、固体培养基)及大型藻类等技术指标:一体式设计,自带暗适应箱体最 佳成像面积:20×20cm测量参数:Fo, Fo’, Fs, Fm, Fm’, Fp, FtDn, FtLn, Fv, Fv'/ Fm', Fv/ Fm ,Fv',Ft,ΦPSII, NPQ_Dn, NPQ_Ln, Qp_Dn, Qp_Ln, qN, qL, QY, QY_Ln, Rfd, ETR等50多个叶绿素荧光参数;紫外激发多光谱荧光成像参数:F440、F520、F690、F740;荧光蛋白荧光强度参数Ft;每项参数均可显示对应二维荧光彩色图像。并可测量计算黄酮醇指数Flavonol Index,、花青素指数Anthocyanin Index。具备完备的自动测量程序(protocol),可自由对自动测量程序进行编辑1)Fv/Fm:测量参数包括Fo,Fm,Fv,QY等叶绿素荧光参数2)Kautsky诱导效应:Fo,Fp,Fv,Ft_Lss,QY,Rfd等叶绿素荧光参数3)Quenching荧光淬灭分析:Fo,Fm,Fp,Fs,Fv,QY,ΦII,NPQ,Qp,Rfd,qL等50多个叶绿素荧光参数4)Light Curve光响应曲线:不同光强梯度条件下Fo,Fm,QY,QY_Ln,ETR等叶绿素荧光参数5)MultiColor紫外激发多光谱荧光成像(选配)6)FPs荧光蛋白成像:GFP、YFP、RFP、BFP等(选配)荧光激发光源组:全LED光源,包括620nm红光、5700K冷白光、735nm远红光、365nm紫外光,445nm品蓝光,470nm蓝光,505nm青光,530nm绿光,590nm琥珀色光等高分辨率CCD相机1)图像分辨率:1360×1024像素2)时间分辨率:在最 高图像分辨率下可达每秒20帧具备7位滤波轮,标配叶绿素荧光滤波器,根据用户需要可定制紫外激发多光谱荧光和GFP、RFP、YFP、BFP等荧光蛋白专用滤波器FluorCam叶绿素荧光成像分析软件功能:具Live(实况测试)、Protocols(实验程序选择定制)、Pre–processing(成像预处理)、Result(成像分析结果)等功能菜单自动测量分析功能:可设置一个实验程序(Protocol)自动无人值守循环成像测量,重复次数及间隔时间客户自定义,成像测量数据自动按时间日期存入计算机(带时间戳)成像预处理:程序软件可自动识别多个植物样品或多个区域,也可手动选择区域(Region of interest,ROI)。手动选区的形状可以是方形、圆形、任意多边形或扇形。软件可自动测量分析每个样品和选定区域的荧光动力学曲线及相应参数,样品或区域数量不受限制(>1000)输出结果:高时间解析度荧光动态图、荧光动态变化视频、荧光参数Excel文件、直方图、不同参数成像图、不同ROI的荧光参数列表等应用案例:1.抗病毒基因研究:叶绿素荧光成像与GFP成像联合分析法国国家农业科学研究院一直致力于马铃薯y病毒组的抗病基因研究,通过不同基因编辑处理方法,验证抗病毒分子机制。相关研究中,研究人员利用FluorCam多光谱荧光成像系统的GFP荧光蛋白成像功能,定量分析感染面积与病毒积累量,从而直观地反映了不同基因功能对拟南芥病毒抗性的影响。同时,叶绿素荧光成像则反映病毒对光合系统的损伤,同步提供植物的光合表型信息。参考文献:Zafirov D, et al. 2021. When a knockout is an Achilles' heel: Resistance to one potyvirus species triggers hypersusceptibility to another one in Arabidopsis thaliana. Mol Plant Pathol. 22: 334–347Bastet A, et al. 2019. Mimicking natural polymorphism in eIF4E by CRISPR‐Cas9 base editing is associated with resistance to potyviruses. Plant Biotechnology Journal 17: 1736–1750Bastet A, et al. 2018. Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants. Plant Biotechnology Journal: 1–132.不同颜色凌霄叶片的叶绿素荧光与紫外激发多光谱荧光成像分析(易科泰EcoTech®实验室)产地:欧洲
264人看过
- 公司产品
- McCANNA截止阀
- 叶绿素检测仪
- PLEIGER液体泵
- OILTECH风机
- 慢回弹泡沫复原时间测试仪
- 微生物定量检测仪
- RICKMEIER
- 肠道菌群检测仪器
- 酒水行业LIMS系统
- 土壤呼吸强度测量仪
- allweiler泵
- 其域L2三维激光扫描仪
- SIPOS
- ESTERS温度开关
- Tolomatic
- 饮用水水质监测设备
- 防爆灌装机
- 美国MOOG柱塞泵
- 次氯酸钠灌装
- 自燃点测定仪
- 果品呼吸强度测量仪
- 化工液体称重
- 耗材库管理
- 其域L2手持SLAM
- 浓硫酸灌装设备
- 盘煤盘粮仪
- 其域K1手持SLAM
- 次氯酸钠灌装设备
- SF6气体断路器微水测试仪
- 德国PLEIGER单向阀
- 麦芽糖浆灌装
- JUNG杂质泵
- 化工液体灌装槽车
- 植物光合测量仪
- 腐蚀疲劳环境
- 抗倒伏测定仪