2025-01-10 17:02:33电池负极材料
电池负极材料是锂离子电池的重要组成部分,对电池性能有重要影响。它主要负责储存和释放锂离子,常见的负极材料包括石墨、硅基材料、锂金属及合金等。石墨因其稳定的结构和良好的导电性被广泛使用;硅基材料具有高能量密度,但体积膨胀问题需解决;锂金属负极理论能量密度极高,但枝晶生长导致安全性问题。选择负极材料需综合考虑能量密度、循环稳定性、成本及安全性等因素。

资源:4673个    浏览:64展开

电池负极材料相关内容

产品名称

所在地

价格

供应商

咨询

钠离子电池负极材料水分测定仪-卡尔费休法
国内 广东
面议
深圳市艾瑞斯仪器有限公司

售全国

我要询价 联系方式
水蒸气透过率测试仪 材料透湿性测试仪
国内 山东
面议
济南赛成电子科技有限公司

售全国

我要询价 联系方式
全自动双极板材料低阻/接触电阻测试仪
国内 北京
¥13500
北京冠测精电仪器设备有限公司

售全国

我要询价 联系方式
土工材料拉力机
国内 北京
¥42000
北京北广精仪仪器设备有限公司

售全国

我要询价 联系方式
材料绝缘电阻测量仪
国内 北京
面议
北京北广精仪仪器设备有限公司

售全国

我要询价 联系方式
2022-12-19 14:26:52【课程邀请】《锂离子电池负极材料粒度分布快速检测技巧》
沈兴志珠海欧美克仪器有限公司产品经理,主要负责粒度检测技术产品的应用和技术支持工作。对于粒度粒形表征基础理论、测量原理和应用技术积累了丰富、深入的实战经验,能够从粉体质量和行业要求等多个维度来分析颗粒检测与表征,为客户提供科学、独到的解决方案。课程内容1、人造石墨负极材料粒度分布测试演示及操作要求解说2、天然石墨负极材料粒度分布测试及操作要求解说3、硅碳负极材料粒度分布测试及操作要求解说4、提问与答疑课程时间2022年12月20日  15:00听课方式手机扫描二维码在线听课
209人看过
2018-11-28 07:23:09锂离子电池负极材料分类有哪些
 
302人看过
2025-01-08 12:30:12氧指数测定仪什么材料
氧指数测定仪什么材料 氧指数测定仪是一种用于测试材料燃烧性能的设备,主要应用于聚合物、塑料及其他易燃材料的防火性能评估。氧指数(LOI)是材料在特定环境下燃烧所需的低氧浓度,它反映了材料的耐火性和自熄性。在选择氧指数测定仪的材料时,除了考虑设备本身的性能和稳定性外,还需要兼顾其耐高温、抗腐蚀等特点。因此,氧指数测定仪的材料选择对仪器的准确性和长期稳定性至关重要。本文将探讨氧指数测定仪所采用的主要材料,分析其技术要求和应用场景。 氧指数测定仪的主要材料 氧指数测定仪通常由多个关键部件构成,每个部件的材质选择直接影响到设备的使用寿命和测试精度。以下是常见的几种材料: 1. 不锈钢 不锈钢是氧指数测定仪中常见的外壳和主要结构材料,特别是304和316型号的不锈钢。其优异的耐腐蚀性、良好的机械性能和抗高温能力使其成为该类设备的理想选择。由于测定过程中涉及高温环境,不锈钢的耐热性和耐氧化性能能够有效保证仪器在长期使用中的稳定性和可靠性。 2. 铝合金 铝合金主要用于氧指数测定仪的部分轻型结构件,因其轻便、强度适中,且能够承受一定的温度变化。铝合金的成本相对较低,且加工性能良好,因此被广泛应用于一些对重量有要求的设备部分。 3. 高温陶瓷 高温陶瓷材料广泛应用于氧指数测定仪中的火焰传感器、加热元件及炉体部分。由于其能够承受极高的温度,并且不易受氧化或腐蚀,因此在高温燃烧环境下尤为重要。常见的高温陶瓷材料如氧化铝、硅酸铝等,不仅能够提供准确的测试数据,还具有较长的使用寿命。 4. 石英玻璃 石英玻璃材料常用于氧指数测定仪中的透明窗口,作为观察测试过程和火焰稳定性的观测通道。石英玻璃耐高温、化学稳定性强、透光性好,能够在高温燃烧过程中保持良好的视野,确保操作者可以实时观察到样品的燃烧状态。 5. 钨合金 钨合金因其优异的高温强度和高熔点,在一些高端氧指数测定仪中用于高温测试区域,尤其是在需要承受极端高温条件下的实验中。钨合金在高温下能保持良好的机械性能,因此被用作一些特殊结构部件,如加热元件的保护材料。 材料选择的影响因素 氧指数测定仪的材料选择不仅仅取决于性能需求,还与生产成本、仪器的使用环境和预期寿命等因素紧密相关。例如,长期高温测试可能需要选择更耐高温的材料,而需要频繁拆卸和维修的部件则应考虑选择耐磨损、易于清洁的材料。材料的热膨胀系数也是选择时的重要参考因素,因为温差可能导致仪器出现误差或损坏。 专业总结 氧指数测定仪作为一款精密的测试设备,对材料的要求极为严格。每种材料的选择都必须满足高温、耐腐蚀、强度以及抗氧化等多重性能要求。常用材料如不锈钢、铝合金、高温陶瓷、石英玻璃和钨合金各具优势,合理搭配这些材料,可以确保氧指数测定仪在不同使用环境下的度和稳定性。了解和掌握这些材料的性能特征是设计和使用氧指数测定仪的关键,能够为材料的燃烧性能测试提供更为可靠的保障。
169人看过
2022-11-29 10:28:11锂离子电池负极析锂监测-面向实用化快充策略
绝大多数客户在考虑电动车时,都会有“里程焦虑”,主要担心的是行驶里程和充电时间。一个优化的快充策略,有助于缩短充电时间,同时确保不降低电池性能和循环寿命为前提。锂离子电池负极材料的析锂现象,被认为是电池性能衰减的主要因素。多步恒电流充电法(MCC)本研究开发了两种策略,采用三电极测试和充电过程中的内阻演化。通过初步分析,有望开发出新的多步恒电流充电方法(MCC),对比测试了四种充电方法。结果显示新的充电策略,同步改善了充电时间和循环寿命,显示该方法在抑 制锂析出的高可靠性。Fig 1. (a) 恒电流-恒电压充电曲线(CC-CV);(b) 多步恒电流充电曲线 (MCC);(c) 恒电流-负向脉冲充电曲线(CCNP);(d) 脉冲电流充电曲线(PCC);(e) 强充电曲线(BCC);(f) 连续可变电流充电曲线(VCP)以上方法的目标是优化容量保持率并缩短充电时间。在不同的充电方法中,CC-CV(Fig 1 a) 是使用最 广泛的一种,因为简单易用。Fig 1b的多阶恒电流法(MCC)是第 一个被应用于快充的方式,该方法由两个或者多个恒电流(CC)组成,当电压到达明确定义的电压值时充电截止。Fig 1c显示的恒电流-恒电压-负向脉冲放电策略(CC-CVNP),将单个恒电流分成若干个特定步骤,穿插一些负向脉冲电流,有利于降低电极内部的浓度梯度。Fig 1d 脉冲放电方式由一系列恒电流充电步骤组成,每一步加入静置过程,可以降低电池极化的风险,提高充电效率,有利于SEI膜的形成。Fig 1e 为放大的充电方式,第 一步为大电流充电,再接着是常用的CC-CV。Fig 1f 是可变的电流方式(VCP),电流随着等效电路模型而连续变化。理论基础对于以上情况,根据已有知识,阻抗为SoC的函数,因此定义充电的模式来优化充电效率和降低发热是可行的。由于循环老化,尤其是在快充过程中,导致电池中不可逆容量衰减,监测此类衰减现象是非常重要的。锂离子浓度梯度导致活性物质颗粒发生破裂,产生应力,从而导致老化。本研究着重于其他老化的因素,析锂现象,即充电过程中金属锂在负极表面发生沉积,尤其在大电流及低温条件下更容易发生,极易产生以下问题。消耗活性锂堵塞电极材料孔径,降低Li离子的移动锂枝晶的形成导致短路风险通过监测充电过程后的电压变化,是众多电化学监测锂析出的方法之一。如果没有发生析锂,在充电刚结束时,电池的开路电压会呈现指数衰减曲线,如Fig 2a 蓝色曲线。动态电压曲线模型用等效电路进行分析,在弛豫过程中显示出指数衰减。如果出现析锂情况,如fig 2a 红色曲线所示,在弛豫时间内,析出的锂会继续嵌入石墨层中,从而增加了LiC6的浓度。弛豫过程中使用微分电压法,有助于分析在静置时电压的演变。Fig 2b的红线清晰的显示出析锂嵌入,开始正常的弛豫现象。Fig 2.(a) 电压弛豫曲线-锂析出(红线) ,无析锂现象(蓝线)(b) 微分电压时间曲线-锂析出(红线),无析锂现象(蓝线)Fig 2.(a) 电压弛豫曲线-锂析出(红线) ,无析锂现象(蓝线)(b) 微分电压时间曲线-锂析出(红线),无析锂现象(蓝线)Fig 3 放电过程的微分电压曲线(DVA)放电过程中的微分电压曲线(DVA)也可以被用于诊断工具来探测负极表面的锂析出情况。如果出现析锂,DVA曲线在放电开始时会出现弯曲情况,如Fig 3红色曲线所示。为了评估和模拟导致锂析出的情况,本研究基于两种方式,如第二部分所讲。评估电极电势对时间的函数,使用三电极电解池对Li/Li+参比电极。评估锂析出对时间的函数,即充电过程中内阻对时间的函数。因为第二个策略简单易于对全电池进行测量,无需拆解电池做成三电极进行测试,所以本研究的目标是比较两种方式对于锂析出的预测能力。实验部分使用商业化的(215 Wh/Kg)的锂离子电池,Si-C | EC/DMC (1:1),1 M LiPF6 | NMC 811体系2.1 使用三电极装置(Li/Li+参比)进行电极电势评估。将放电态下的商业锂离子电池进行安全拆解,电极材料裁剪为直径18mm的圆片,并组装成测试电解池(即EL-Cell)。因为原始的电池中,集流体两侧都涂覆了电极材料,将其中一面的材料去除掉,以确保集流体和EL-Cell的接触。这个操作不会影响正极和负极材料的比例,重现原始状况。EL-Cell的配置先比钮扣电池更好,因为其易于拆卸,可以用其他技术对材料做进一步分析。对电池的充放电过程如下。CC-CV充电(C/2)到4.2V截止,(CV步骤截止条件为当I < C/40)CC放电(1C)放电至2.75V为了探测负极的锂析出现象,使用锂参比电极探测负极电位变负。这个是锂离子在负极表面析出而未迁入石墨的直接证据。在若干倍率下执行CC充电步骤,将负极电势(Uan)等同于0V时结束充电。为了设计多步充电过程中的每个单步,一旦选择特定步骤的充电倍率,充电结束时(相应截止电压)测量全电池的电压(与所选充电倍率相关)。2.2 在充电过程中,测试内阻对时间的函数关系,内阻的测量,在静置的3秒期间,如Fig 4所示在每个充电结束后使用电流中断法,在两个静置之间,增加2.5 % SoC。Fig 4. 在3 秒的静置期进行内阻测量Fig 5. 锂析出和嵌入竞争模型的电路示意图2.3 多步恒电流充电曲线(MCC)Fig 6 (a) 电压响应曲线,(b)快充电流曲线3 、结果分析Fig 9 a显示了全电池(EL-Cell)三电极装置,对几个电池进行不同倍率的充电至1.32C,显示出很高的电压稳定性。Fig 9a显示全电池的电压直至负极电压低于Li/Li+参比电极,Fig 9b 显示了相应的负极半电池行为。Fig 9 (a) 全电池电压,(b) 不同倍率下负极半电池电压 (vs Li/Li+)Fig 10 显示充电过程中全电池的内阻变化情况,不同倍率,内阻对SoC的函数。蓝色曲线为0.1 C倍率时没有发生析锂,低倍率时期望没有发生析锂情况。随着倍率的增加,曲线走势向左移动,因为出现更高的过电势,主要由扩散过程导致。Fig 10 不同充电倍率下的内阻对SoC的函数,0.1 C 的曲线作为参考从0.75C开始(黄色曲线),可以看到在高SoC下(红色区域)内阻急剧下降,出现析锂,0.1C和0.5C并没有表现出这种情况。这个现象可以归结为析锂开始发生,正如其他报道所提到的。基于以上结果,可以创建几种快充方式。正如所期望的,通过对三电极电解池中电极电势的测量,可以用于检测负极锂析出的发生。充电过程中内阻的演化,因为无需拆解电池,可以直接进行全电池测试,因此会受电动汽车行业青睐。Fig 11. 不同充电方式下的SoH 与循环圈数的对应关系 Fig 11 中显示了MCC2的充电方式,显示出最 高的SoH能力,充电时间减少约3min 。MCC1曲线显示出老化同样也优于参考曲线。MCC Fast 1 显示整体的老化与参比相当,但是充电时间增加约6min 。最 后,对于MCC Fast 2 而言,如其他曲线出现首次容量衰减后,后续有所提升,在300次循环后表现出和MCC Fast 1类似的老化趋势。Fig 12 充放电容量对循环次数的函数Fig 12 显示的是在第 一阶段老化的充电和放电容量(75圈循环) 。在所有曲线中,可以观察到MCC2表现出最高的充电和放电容量。结论两种不同的策略用于筛选电流和电压的限制条件,用于避免锂离子电池负极表面锂金属的析出沉积。使用三电极装置,评估电极电位对时间的函数基于经典电化学原理,监测电极电势制作过程复杂,且需要特殊装置,如手套箱,在拆解过程中电极有失效风险多步恒电流充电(MCC2)策略降低充电时间并提高容量保持率输力强9300R ASPIRE软件界面显示,可进行自由灵活的多步充电(MCC)设置,结合快速数据采集,dQ/dV 分析,及强大的同步交流阻抗功能,可用于对锂离子电池快充策略的探索。参考资料:1. Detection of Lithium Plating in Li-Ion Cell Anodes Using Realistic Automotive Fast-Charge Profiles, Batteries 2021, 7, 46
337人看过
2017-10-25 02:31:39锂离子电池负极材料A8-5和S360分别是什么材料
 
444人看过
SiO2荧光发光性能
上转换发光材料
涡旋混匀仪
气力输送技术
荧光光谱表征量子点教程
智能结构与器件
InGaAs半导体检测器
表征材料表面化学性质
可变角度测试附件
化药色谱柱选型
显微拉曼光谱
仿生麦芒雾水收集系统
液体洗脱法
便携式X射线荧光光谱分析仪
色谱质谱技术
食品安全快速检测
可重构软物质微型机器人
投影微立体光刻
电液伺服试验机
BIOFIRE支原体检测
细胞治疗工艺环境
非线性基材实现可控拉胀
复合材料冲击试验机
金属硫属化合物材料
化石中的碳元素分析
化药中色谱柱
mcu自动化测量单元
千眼狼多相流系统
iPSC 衍生细胞产品
纳升液相系统
高分辨率相机
表面等离激元与介质波导耦合
PARAFAC 模型
单级拉曼光谱仪
RTS系列拉曼光谱测量系统
导体材料构筑SERS芯片