2025-01-10 17:03:03光催化降解装置
光催化降解装置是一种利用光催化剂在光照条件下催化降解有机污染物的设备。它通过将光能转化为化学能,激活光催化剂表面的活性位点,进而产生具有强氧化性的自由基,这些自由基能够破坏有机污染物的化学键,将其降解为无害的小分子物质,如水和二氧化碳。该装置具有高效、环保、节能等优点,广泛应用于废水处理、空气净化、自洁材料等领域。通过优化光催化剂和光照条件,可进一步提高其降解效率和适用范围。

资源:5571个    浏览:9展开

光催化降解装置相关内容

产品名称

所在地

价格

供应商

咨询

光催化微型反应装置 GPPCH
国内 北京
面议
北京中教金源科技有限公司

售全国

我要询价 联系方式
CEL-GPPCH光催化微型反应装置
国内 北京
面议
北京中教金源科技有限公司

售全国

我要询价 联系方式
光催化试验专用气相色谱仪
国内 湖北
面议
武汉泰特沃斯科技有限公司

售全国

我要询价 联系方式
湖南光催化反应装置JT-GHX-DC跑量销售
国内 浙江
¥13000
杭州聚同电子有限公司

售全国

我要询价 联系方式
上海杜斯 防爆型光催化反应装置
国内 上海
面议
上海杜斯仪器有限公司

售全国

我要询价 联系方式
2022-04-28 07:13:31HPRS-PEC250光催化光电反应釜
优势特点:HPRS-PEC250光催化光电反应釜高端版采用蓝宝石大视窗,标配控温搅拌、耐压电极、铂电极夹、自动升降平台;技术上采用最 新的卡环法兰结构,模块加热,实现恒温定时和运行定时功能、在线取液体样和气体样品。更安全的设计,可24小时不间断工作。产品应用:光电协同作用提高光催化材料的催化活性。将催化剂固定在导电基体上,同时外加-偏压抑 制光生电子和空穴的复合,从而发展出一种新型的技术—电化学辅助光催化技术,即光电催化技术。这是一种有效促进光生电子和空穴分离,并利用光电协同作用增强光催化氧化技术,以光催化剂作为光阳极,对其施加一定的偏压,光生电子就会迁移至外电路,从而抑 制光生电子和空穴的复合,空穴在催化剂表面积累,并进一步提高催化剂的活性。光电化学还原CO2,半导体在光照作用下,利用阴极材料在电化学作用下都能产生催化活性的特性,达到光电结合催化还原CO2的目的。
204人看过
2023-07-12 14:28:10核磁共振测试装置
核磁共振(Nuclear Magnetic Resonance,NMR)测试装置是用于进行核磁共振实验的仪器设备。它通常由以下几个主要组成部分构成:1.磁体(Magnet):磁体是核磁共振测试装置的主要组成部分,用于产生强大的恒定磁场。常见的磁体类型包括超导磁体和永磁磁体。超导磁体通常使用低温超导材料制成,能够产生非常高的磁场强度,而永磁磁体则使用常久磁体产生相对较低的磁场强度。2.射频系统(RF System):射频系统用于产生和控制射频脉冲,用于激发和探测核自旋的共振信号。它通常包括射频发生器、射频放大器和射频线圈。射频脉冲的频率和功率可以根据实验需要进行调节。3.控制系统(Control System):控制系统用于控制整个核磁共振测试装置的操作。它通常包括计算机、数据采集系统和相关的控制软件。计算机通过软件控制实验参数的设置、数据采集、处理和分析等操作。4.梯度线圈(Gradient Coils):梯度线圈用于在空间中产生线性磁场梯度,以实现对样品的空间定位和空间编码。通过梯度线圈的控制,可以实现核磁共振成像(MRI)等空间分辨率较高的实验技术。5.探测器(Detector):探测器用于接收和检测核磁共振信号。常见的探测器包括线圈探测器(例如表面线圈和体积线圈)和光学探测器(例如光纤光栅)等。核磁共振测试装置的具体配置和规格会因应用领域和实验需求的不同而有所差异。不同的装置可以进行各种类型的核磁共振实验,包括化学成分分析、结构鉴定、动力学研究、磁共振成像等。
139人看过
2023-04-18 10:25:01低真空下的高效光催化二氧化碳还原反应
1. 文章信息标题:High-efficiency photoreduction of CO2 in a low vacuum中文标题: 低真空下的高效光催化二氧化碳还原反应页码:15389-15396DOI:10.1039/d2cp00269h               2. 期刊信息期刊名:Physical Chemistry Chemical PhysicsISSN:1463-90842021年影响因子:3.945分区信息: 二区TOP(升级版)涉及研究方向: 物理化学、化学物理、生物物理化学 3. 作者信息:作者是 Yuxin Liu (刘钰鑫) 。通讯作者为  Shuai Kang (康帅)、Zhuofeng Hu (胡卓锋)、Wenqiang Lu (陆文强)。4.实验仪器:CEL-SPH2N/PAEM文章简介:利用太阳光进行光催化反应制备绿色清洁能源是非常诱人的技术。加之,如今人们依赖化石能源给大气中排放了过多的CO2。将CO2在光的作用下转换成可燃烧的CO、CH4或者其他碳氢化合物是一个两全其美的方法。CO2是一个很稳定的分子,许多研究关注制备高效、稳定的光催化剂来提高CO2还原性能,这些研究主要通过扩展光响应范围、加快电荷输运、增加活性位点、选择性吸附CO2等。但是,光催化CO2反应目前面临的一个大问题是,不管用哪种催化剂,反应的产物还是太少,不能在现实中实施。然而,反应中CO2的实际用量很少,每克催化剂每小时大约只用毫摩尔级的CO2,但是绝大部分研究在大气压下纯二氧化碳中进行。我们认为,在合适的CO2含量中研究CO2还原反应是很有意义的。因此,我们用常规TiO2作为光催化剂,在低真空下研究了光催化CO2的反应效率。如下图1,实验表明低真空气氛有助于提高光催化CO2反应性能。在低浓度CO2(10%)中,低真空下反应的CH4产率提高了100倍,纯CO2中的CH4产率也提高了大约18倍。通过质谱检测,反应生成的CH4来源于CO2而不是杂质等的其他物质。图1(a)不同气压下CH4产率,(b)-80kPa和大气压下CH4产率对比.(c)用13CO2反应得到的13CH4的质谱谱线.催化反应的稳定性在实际实施中举足轻重,我们测试了在低真空下反应四个循环(图2a)和连续反应24小时(图2b)的情况,实验表明,CH4产率和选择性均稳定。24小时后,CH4产率在低真空下是3.4umol,在大气压下是0.9umol.我们用XPS分析了在不同气压下的催化反应过程(图2c-d)。低真空下,反应3.5小时,催化剂表面COH*饱和,一直持续到反应24小时(有CH4生成);而在大气压下,反应3.5小时的COH*很少量,反应24下时催化剂表面的COH*才逐渐饱和(如图2e)。图2 低真空下光催化CO2反应的稳定性测试.(a)循环测试,(b)连续测试.测试前后催化剂表面COOH*和CO*的(c)C1s变化情况和(d)定量分析,(e)COH*的演变图.我们分析了低真空下光催化CO2反应的机理。如图3a,TiO2吸收了光子产生电子,这些光电子一部分与CO2反应生成CO和CH4。检测到的光电流是电子-空穴再结合和表面吸附物质导致的电子湮灭这两者的竞争结果导致。在低气压下,后者被抑制,体现出增大的光电流(如图3b),这有助于CO2的还原反应。另外,大气中的气体分子由于布朗运动能促进CO从催化剂表面的脱附,不利于CH4的生成(如图3c)。大气中的气体分子也会占据催化剂表面的位点,导致CO-不易与-H结合,阻碍CH4的生成(如图3d)。图3低真空下光催化CO2反应的机理分析.(a)TiO2的能带结构,(b)不同气压下的光电流对比,(c)布朗运动对反应的影响,(d)活性位点抑制.为了验证低真空下光催化CO2反应性能提高,我们用Pt-TiO2催化剂研究了光催化CO2反应,结果如图4。低真空下,CH4产率是1.47umol,选择性是94.71%;而大气压下,CH4产率是0.83umol,选择性是81.14%。图4低真空下光催化CO2反应的验证.(a)Pt-TiO2的CH4产率,(b)不同Pt含量的CH4产率对比.总之,研究表明气压对光催化CO2还原反应有很大的影响,低真空下光催化CO2反应性能有所提高。不论在纯CO2中还是在低浓度CO2(10%)中,这个结论依然成立。性能增强主要来源于低真空下光电子能更好的聚集、布朗运动较弱、有更多的活性位点。我们认为这种从工程学角度来提高光催化CO2的反应效率是有效且普适的策略,能为光电催化CO2还原反应和其他反应提供有价值的参考。
152人看过
2022-11-25 11:40:15低真空下的高效光催化二氧化碳还原反应
1. 文章信息标题:High-efficiency photoreduction of CO2 in a low vacuum中文标题: 低真空下的高效光催化二氧化碳还原反应页码:15389-15396DOI:10.1039/d2cp00269h               2. 文章链接https://pubs-rsc-org-443.webvpn.las.ac.cn/en/content/articlelanding/2022/cp/d2cp00269h3. 期刊信息期刊名:Physical Chemistry Chemical PhysicsISSN:1463-90842021年影响因子:3.945分区信息: 二区TOP(升级版)涉及研究方向: 物理化学、化学物理、生物物理化学 4. 作者信息:第 一作者是 Yuxin Liu (刘钰鑫) 。通讯作者为  Shuai Kang (康帅)、Zhuofeng Hu (胡卓锋)、Wenqiang Lu (陆文强)。5.产品型号:CEL-SPH2N系列全自动光解水系统利用太阳光进行光催化反应制备绿色清洁能源是非常诱人的技术。加之,如今人们依赖化石能源给大气中排放了过多的CO2。将CO2在光的作用下转换成可燃烧的CO、CH4或者其他碳氢化合物是一个两全其美的方法。CO2是一个很稳定的分子,许多研究关注制备高效、稳定的光催化剂来提高CO2还原性能,这些研究主要通过扩展光响应范围、加快电荷输运、增加活性位点、选择性吸附CO2等。但是,光催化CO2反应目前面临的一个大问题是,不管用哪种催化剂,反应的产物还是太少,不能在现实中实施。然而,反应中CO2的实际用量很少,每克催化剂每小时大约只用毫摩尔级的CO2,但是绝大部分研究在大气压下纯二氧化碳中进行。我们认为,在合适的CO2含量中研究CO2还原反应是很有意义的。因此,我们用常规TiO2作为光催化剂,在低真空下研究了光催化CO2的反应效率。如下图1,实验表明低真空气氛有助于提高光催化CO2反应性能。在低浓度CO2(10%)中,低真空下反应的CH4产率提高了100倍,纯CO2中的CH4产率也提高了大约18倍。通过质谱检测,反应生成的CH4来源于CO2而不是杂质等的其他物质。图1(a)不同气压下CH4产率,(b)-80kPa和大气压下CH4产率对比.(c)用13CO2反应得到的13CH4的质谱谱线.催化反应的稳定性在实际实施中举足轻重,我们测试了在低真空下反应四个循环(图2a)和连续反应24小时(图2b)的情况,实验表明,CH4产率和选择性均稳定。24小时后,CH4产率在低真空下是3.4umol,在大气压下是0.9umol.我们用XPS分析了在不同气压下的催化反应过程(图2c-d)。低真空下,反应3.5小时,催化剂表面COH*饱和,一直持续到反应24小时(有CH4生成);而在大气压下,反应3.5小时的COH*很少量,反应24下时催化剂表面的COH*才逐渐饱和(如图2e)。图2 低真空下光催化CO2反应的稳定性测试.(a)循环测试,(b)连续测试.测试前后催化剂表面COOH*和CO*的(c)C1s变化情况和(d)定量分析,(e)COH*的演变图.我们分析了低真空下光催化CO2反应的机理。如图3a,TiO2吸收了光子产生电子,这些光电子一部分与CO2反应生成CO和CH4。检测到的光电流是电子-空穴再结合和表面吸附物质导致的电子湮灭这两者的竞争结果导致。在低气压下,后者被抑 制,体现出增大的光电流(如图3b),这有助于CO2的还原反应。另外,大气中的气体分子由于布朗运动能促进CO从催化剂表面的脱附,不利于CH4的生成(如图3c)。大气中的气体分子也会占据催化剂表面的位点,导致CO-不易与-H结合,阻碍CH4的生成(如图3d)。图3低真空下光催化CO2反应的机理分析.(a)TiO2的能带结构,(b)不同气压下的光电流对比,(c)布朗运动对反应的影响,(d)活性位点抑 制.为了验证低真空下光催化CO2反应性能提高,我们用Pt-TiO2催化剂研究了光催化CO2反应,结果如图4。低真空下,CH4产率是1.47umol,选择性是94.71%;而大气压下,CH4产率是0.83umol,选择性是81.14%。图4低真空下光催化CO2反应的验证.(a)Pt-TiO2的CH4产率,(b)不同Pt含量的CH4产率对比.总之,研究表明气压对光催化CO2还原反应有很大的影响,低真空下光催化CO2反应性能有所提高。不论在纯CO2中还是在低浓度CO2(10%)中,这个结论依然成立。性能增强主要来源于低真空下光电子能更好的聚集、布朗运动较弱、有更多的活性位点。我们认为这种从工程学角度来提高光催化CO2的反应效率是有效且普适的策略,能为光电催化CO2还原反应和其他反应提供有价值的参考。产品推荐:CEL-PAEM-D8Plus光催化活性评价系统    CEL-PAEM-D8Plus光催化活性评价系统(专业全自动二氧化碳还原CO2+全解水H2O)是评价光催化剂的重大升级, 主要用于专业全自动二氧化碳还原密闭体系分析,兼容光解水、全解水。系统最 大的优势是全新的外观设计,更加方便的使用,系统所有管路全部采用控温,实现样品采集与样品的分析无缝连接。D8Plus将玻璃系统集成于封闭遮光的箱体内,易于移动,不易损坏。在催化剂的成本较昂贵的实验中,更有利用光催化CO2的应用。实现在线全自动无人值守测试分析;可选择手动、半自动、全自动取样方式;配置软件USB反控;测试范围广,氢、氧、CO2、甲烷、CO、烃类、甲醛、甲醇、甲酸等微量气体。
272人看过
2023-01-04 11:22:37【新案例】镇痛药芬 太尼 - 两步连续光催化合成
背景介绍巴西Federal University of São Carlos化学系的教授,在最近一期Organic Letters 上发表了一篇文章,介绍了一种新颖的芬 太尼合成方法。芬太 尼是世界范围内最常用的,用于术中镇痛的阿 片类药物之一。芬太 尼具有比目前流行的吗 啡和哌替啶更好的镇痛作用。传统芬太 尼合成过程,反应时间长、步骤多,还需要昂贵的还原剂、保护基团和卤代溶剂的使用等缺点。图1. 芬太 尼连续合成示意图作者设计了一种光催化连续流动技术的合成路线。该连续流工艺具有快速、经济、安全和可扩展性,并可应用于一类具有高需求的活性药物成分(API) 的合成。研究过程1.釜式工艺研究图2. 第 一步光合化学反应合成中间7   釜式工艺条件筛选发现:较高用量的抗坏血酸(AscH2)和较稀反应液浓度,有助于提高转化率;溶剂甲醇和2eq.的AscH2的条件下,获得了最高的GC – MS收率(85%);其他溶剂,如DMF:H2O, DMSO, THF和H2O的反应结果都不理想。2.第 一步光催化连续工艺研究作者将第 一步光催化反应转换为连续流模式。在不同停留时间和光强下,对持液体积为30mL的450nm LED蓝光反应器进行了两种强度的测试。图3. 第 一步光催化连续工艺流程图表1. 第 一步光催化连续工艺条件筛选a:第 一步连续流光合成反应条件筛选结果。反应在34°C(带夹套控温PFA盘管反应器)下进行,以MPA(3.0eq.)、AscH2(2.0eq.)、4-哌啶酮(5)(0.25mmol)、苯乙醛(1.2eq.)和[Ru(bpy)3]Cl2·6H2O (1 mol %)在脱气甲醇(1mL)中,得到0.208 M浓度5的溶液(1.2mL)b:以正十二烷为内标,定量GC - MS计算产率c:分离收率d:反应在50°C下进行e:反应在10°C下进行    综合反应收率和生产效率,作者选择了表1 entry 5, 作为相对最佳条件,并进行了放大研究,展现了极好的重复性(57 - 60%的产率)。3. 第二步光催化连续工艺研究对于第二步光催化反应,作者使用了与第 一步相同的优化连续条件。用N-苯乙基保护的哌啶酮(7)作为亲电试剂,苯胺(8)作为亲核试剂形成亚胺中间体。图4. 第二步光催化连续工艺流程图表2. 第二步光催化连续工艺条件筛选a:第二步连续流光合成反应。以MPA(3.0eq.)、AscH2(2.0eq.)、N-苯乙基保护的哌啶酮 (7) (0.25mmol)、苯胺(8)(1.2eq.)和[Ru(bpy)3]Cl2·H2O (1mol %)在脱气甲醇(1mL)中反应25℃,得到0.208M浓度7的溶液。b:分离收率在0.083mL/min的流速下,使用2.0g (9.8mmol)的7进行工艺强化,以分离收率84%,得到产物9(2.3g量级,约7小时)。4.两步光催化反应串联作者设计了一种将两步光催化反应连接起来,并避免中间产物7提纯的系统装置。使用方案5中给出的设置以0.167mL/min流速,进行第 一步光催化反应,并对这步反应液(中间体7)进行收集。同时,将其与苯胺8以0.083mL/min的总流速,进入第二个光照反应器中图5. 两步光催化反应串联示意图最终流出的反应液的GC - MS分析表明,中间体7几乎被完全消耗,产物9的总GC - MS产率为52%,两步光反应总分离产率为42% (0.3 g反应量级)。两个光催化步骤的串联,消除了一个纯化步骤,并最大限度地减少了废物的产生。二、实验总结两个连续光催化步骤的串联,消除了一个纯化步骤,并最大限度地减少了废物的产生;新方法降低了反应温度并缩短了反应时间;该方法可用于相关API药物分子的批量连续制造;药物新合成方法对原料药文献和制药工业有很大的实用价值。参考文献:Org. Lett. 2022, 24, 8331 −8336
613人看过
一体化荧光显微镜
脱氢反应器
高倍数显微镜
混合反应釜
光照生物反应器
脱硫反应器
衬塑反应釜
半导体冷水机
连续流反应釜
高温反应器
紫外光反应器
微纳反应器
反射金相显微镜
平行光反应器
冷藏柜展示柜
电催化装置
自动化反应釜
胶体磨反应器
升流式厌氧反应器
光电反应器
反应釜温控装置
反应釜蒸汽发生器
低压反应釜
旋流反应器
光热反应器
流化床式反应器
气液固三相反应器
6位半数字万用表
定制玻璃反应釜
平行合成反应器
病原检测设备
沥青反应釜
蒸馏反应釜
振荡流反应器
工作台冷藏柜
柴油加氢裂化装置