2025-01-10 10:53:59直流双电源快切
直流双电源快切是一种电力切换技术,旨在确保直流供电系统的连续性和可靠性。当主电源发生故障或失电时,该技术能迅速将负载切换至备用电源,且切换过程快速、平稳,几乎不产生中断或扰动。直流双电源快切系统由电源检测、控制逻辑和执行机构组成,具有切换速度快、稳定性好、可靠性高等特点,广泛应用于医院、数据中心、通信基站等关键场所,为重要负载提供持续、稳定的电力保障。

资源:4933个    浏览:33展开

直流双电源快切相关内容

产品名称

所在地

价格

供应商

咨询

DPAS直流双电源快速切换/直流双电源快切/直流双电源开关/直流双电源自动转换/48V双电源切换
国内 江苏
面议
南京国高电气自动化有限公司

售全国

我要询价 联系方式
FSC中低压无扰动切换柜/电快速切换柜/双电源切换柜/快切柜/高压快切/母联快切/成套快切
国内 江苏
面议
南京国高电气自动化有限公司

售全国

我要询价 联系方式
DCM633/635电源无扰动快速切换/无扰动快切/电快切/无扰动切换装置/双电源快速切换
国内 江苏
面议
南京国高电气自动化有限公司

售全国

我要询价 联系方式
DCMT自动电源转换系统/双电源自动切换/atmt自动切换/双电源自动转换/atmt双电源切换装置
国内 江苏
面议
南京国高电气自动化有限公司

售全国

我要询价 联系方式
敌草快(杀草快)
国内 上海
面议
上海安谱实验科技股份有限公司

售全国

我要询价 联系方式
2025-05-27 11:30:23声级计怎么切频率
声级计怎么切频率 在现代噪声测量中,声级计的频率响应是影响测量准确性和可靠性的重要因素。切频率,作为声级计的一项基本功能,它决定了仪器在测量不同频率的声音时的响应能力。了解如何正确切频率,对于确保测试数据的科学性和可比性至关重要。本文将详细探讨声级计切频率的概念、方法以及应用场景,帮助您准确掌握声级计的使用技巧,并优化测试效果。 声级计的切频率,指的是在特定测量条件下,将输入信号按照预设频率范围进行分析的过程。频率范围的切割,通常是通过滤波器或分频器实现的,这些设备能够有效地将音频信号按一定的频带进行分解,针对不同的频率响应给出相应的测量值。标准的声级计通常包括几种不同的频带模式,例如A计权、C计权和Z计权模式,分别适用于不同的测量需求和场合。 声级计频率响应的切频技术 A计权(A-weighting):A计权滤波器用于模拟人耳对声音的敏感度,主要针对中高频范围。它对低频和高频的声音信号给予较低的权重,而对中频(约1000Hz至8000Hz)给予更高的权重。A计权广泛应用于环境噪声测量和工作场所噪声监测。 C计权(C-weighting):C计权滤波器用于测量更宽频带的声音,特别适用于测试瞬时噪声或声压级较高的场景。C计权滤波器对整个频率范围内的声音信号赋予较为平衡的权重,适合用于低频噪声的测量。 Z计权(Z-weighting):Z计权是指不进行任何加权的测量,通常用于精确记录音频信号的原始频率分布。Z计权对于科学研究和实验室测量尤其重要,它能够提供接近真实声音的频率响应。 如何切频率 在实际操作中,切频率主要依靠声级计的设置和预设功能。现代声级计通常配备了数字信号处理器(DSP),能够自动根据测量模式调整滤波器的频率范围。例如,在A计权模式下,声级计的频率范围通常会限制在20Hz至20kHz之间,同时对低频和高频信号进行衰减处理,以符合人耳的感知特性。而在C计权模式下,频率响应则会较为平衡,适应更大范围的频率信号。 切频率的实际应用 在不同的场景中,选择合适的切频率模式对测量结果的准确性至关重要。例如,在噪声污染监测时,A计权模式能够较好地模拟人耳对环境噪声的感知,适合用于居民区和工作环境的噪声评估。而在高功率噪声源的测量中,C计权模式能够提供较为的声压级数据,适合用于工业和交通噪声的监测。 结语 声级计的切频率不仅仅是一个技术操作,更是测量准确性和数据解读的关键。根据不同的测量需求,选择合适的频率切割模式和滤波方式,能够确保噪声测试的科学性和度。专业的声级计用户应当熟悉不同频率响应模式的应用场景,充分理解它们的工作原理,才能在实际测量中得出具有高度可靠性和可比性的结果。
114人看过
2025-03-07 13:30:11直流调速器怎么调试
直流调速器怎么调试:优化电机性能的关键步骤 在电气控制系统中,直流调速器是一种至关重要的设备,它可以精确控制直流电机的转速,实现不同负载情况下的稳定运行。调试直流调速器是确保其高效稳定运行的关键环节。通过合理的调试步骤,不仅可以提高电机的性能,还能延长设备的使用寿命。本文将详细介绍直流调速器的调试方法,帮助工程师和技术人员掌握正确的调试技巧,从而优化电机的运行效果。 1. 检查硬件连接 在进行调试之前,首先要确认直流调速器及电机的硬件连接是否正确。检查电源线、控制线以及各个接线端子是否牢固、无松动或短路现象。确保设备接地良好,避免电气干扰或设备损坏。检查电机和调速器的功率匹配,确保两者的额定功率符合系统需求。 2. 设置基本参数 在确保硬件连接无误后,进入调试界面,进行直流调速器的基本参数设置。这些参数包括电机的额定电压、额定电流、额定转速以及控制方式。不同类型的直流调速器可能会有不同的设置方式,通常可以通过面板上的调节按钮或控制软件进行设定。确保这些基本参数符合电机的技术要求,以便调速器能够精确控制电机的运行状态。 3. 调整增益和反馈控制 直流调速器的核心功能之一是对电机的转速进行精确控制。为了实现这一点,需要调整调速器的增益和反馈控制系统。增益参数决定了调速器响应输入信号的灵敏度,而反馈控制则通过监测电机的实际转速来调整输入信号。调整增益时要小心过高或过低的设置,因为这可能导致电机出现过调或响应迟缓的现象。通过适当的调整,使电机运行平稳,避免振动或噪音过大。 4. 调整加减速时间 加减速时间是影响直流电机启动和停止过程的重要因素。调速器一般都具备加速和减速时间的调节功能。根据具体的应用需求,可以设置适当的加减速时间,避免电机在启动或停止时产生过大的电流冲击。过快的加减速可能会导致电机损伤或系统不稳定,而过慢的加减速则可能降低生产效率。通常,针对不同负载情况下的需求,调整加减速时间能够使电机的启停更加平稳,延长电机的使用寿命。 5. 进行负载测试 调试过程中,负载测试是验证直流调速器调试效果的重要环节。通过模拟不同工况下的负载运行,观察电机的转速变化情况,确保调速器在各种负载下都能稳定运行。负载测试能够帮助技术人员发现潜在问题,如转速波动、电流异常等,并根据测试结果进一步调整参数,确保设备在实际使用中的高效性和稳定性。 6. 终检查与测试 在完成以上调试步骤后,需要进行全面的检查与测试。检查各项参数设置是否符合技术要求,确保没有遗漏或错误。进行长时间的运行测试,监测电机在连续工作中的性能变化,确保设备的稳定性和可靠性。通过记录测试数据和调试过程中的各项参数,可以为未来的维护提供依据,也能够为不同应用场景下的调试工作积累经验。 结语 直流调速器的调试工作关乎电机系统的性能和安全,因此必须严格按照操作规范进行。通过合理的硬件检查、参数设置、增益调整、加减速时间控制和负载测试,能够确保直流调速器在不同工况下的佳运行效果。调试工作的细致入微是优化电机性能的基础,也是延长设备使用寿命的重要保证。
196人看过
2023-06-12 09:50:04奥林巴斯手持式合金分析仪-快检材料成分
  手持合金分析仪是一种基于X射线的荧光光谱仪,可以实现无损检测,只需3秒即可得到分析结果。正因手持合金分析仪的这些特点,在各个行业的工作场地,抗摔防潮,结合快速识别材料化学成分和矿物相的X射线衍射分析仪,几乎横扫各大质检、检测线。  尤其在石油和天然气行业,受高温、高压、机械应力和腐蚀性物质等因素影响,合金制造至关重要,甚至每根管道,每种焊料,每个焊缝、接口和螺钉都必须准确,否则会出现危及整条管线或整个容器安全隐患。使用奥林巴斯手持式合金分析仪,不仅可以在几秒钟内完成合金辨别,还能根据XRF频谱表明的各种金属相对丰度,与预先加载的合金和牌号库,对金属进行自动核查,可谓是业内“安全守护员”。  通过无损快速检测材料成分,为预防部件故障节省了大量时间,且不惧恶劣环境,维护工厂安全行之有效。通常在人们的印象里,越精密仪器,越是娇气,但合金粉分析仪已通过经受4英尺跌落试验,而且,低温至10℃,高温至50℃,均不影响合金分析仪检测,完全适应各种复杂工作环境。  数据显示直观明了,这是奥林巴斯手持式合金分析仪另一大亮点。借鉴智能手机的屏幕展示,合金分析仪的大屏幕,展示了合金材料大量翔实信息,且允许用户自定义主屏幕上显示功能,轻松滑动、点击。合金分析仪还可能无线连接访问奥林巴斯科学云,实现存储数据、远程查看数据、共享屏幕等功能。  赢洲科技作为奥林巴斯一级品牌代理商,拥有完整的售前售后服务体系,如有仪器购买或维修需求,可联系赢洲科技为您提供原装零部件替换、维修。
478人看过
2023-05-18 16:59:34全共线多功能超快光谱仪与高精度激光扫描显微镜,二维材料与超快
全共线多功能超快光谱仪BIGFOOT     MONSTR Sense Technologies是由密歇根大学研究人员成立的科研设备制造公司。该公司致力于研发为半导体研究应用而优化的超快光谱仪和显微镜,突破性的技术可将光学器件和射频电子器件耦合在一起,以稳健的方式测量具有干涉精度的光学信号,真正实现一套设备、一束激光、多种功能。图1. 全共线多功能超快光谱仪BIGFOOT       全共线多功能超快光谱仪BIGFOOT不仅兼具共振和非共振超快光谱探测,还可以兼容瞬态吸收光谱(Transient absorption (TAS))、相干拉曼光谱(Coherent Raman Spectroscopy (CRS))、多维相干光谱探测(Multidimensional Coherent Spectroscopy (MDCS))。开创性的全共线光路设计,使其可以与该公司研发的高精度激光扫描显微镜(NESSIE)联用,实现超高分辨超快光谱显微成像。全共线多功能超快光谱仪的开发也充分考虑了用户的使用体验,系统软件可自动调控参数,光路自动对齐、无需校正等特点都使得它简单易用。全共线多功能超快光谱仪BIGFOOT主要技术参数:高精度激光扫描显微镜NESSIE      MONSTR Sense Technologies的高精度激光扫描显微镜NESSIE可用入射激光快速扫描样品,在几秒钟内就能获得高光谱图像。该设备可适配不同高度的样品台和低温光学恒温器,物镜高度最多可变化5英寸,大样品尺寸同样适用。NESSIE显微镜是具有独立功能,可以与几乎任何基于激光测量与高分辨率成像的设备集成在一起,也非常适合与该公司研发的全共线多功能超快光谱仪集成。                  图2. 高精度激光扫描显微镜NESSIE        高精度激光扫描显微镜-NESSIE的输入信号为单个激光光束,输出信号为样品探测点收集的单个反向传播光束,这样的光路设计确保了反传播信号在扫描图像时不会相对于输入光束漂移,因而非常适用于激光的实验中的成像显微镜系统。        图3. 使用NESSIE在室温下测量的GaAs量子阱的图像。a) 用相机测量的白光图像。b) 用调谐到GaAs带隙的80MHz激光器(5mW激光输出)进行激光扫描线性反射率测量。c) 同时测量的激光扫描四波混频图像揭示了影响GaAs层的亚表面缺陷 BIGFOOT+NESSIE应用案例:1. 高精度激光扫描显微镜用于材料表征      美国密歇根大学课题组通过使用基于非线性四波混频(FWM)技术的多维相干光谱MDCS测量先进材料的非线性响应,利用激子退相和激子寿命来评估先进材料的质量。课题组使用通过化学气相沉积生长的WSe2单分子层作为一个典型的例子来证明这些功能。研究表明,提取材料参数,如FWM强度、去相时间、激发态寿命和暗/局部态分布,比目前普遍的技术,包括白光显微镜和线性微反射光谱学,可以更准确地评估样品的质量。在室温下实时使用超快非线性成像具有对先进材料和其他材料的快速原位样品表征的潜力。图4.  (a)通过拟合时域单指数衰减得到的样本的去相时间图,在图(a)中用三角形标记的选定样本点处的FWM振幅去相曲线【参考】Eric Martin, et al; Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022). 2.二维材料中激子相互作用和耦合的成像研究      过渡金属二卤代化合物(TMDs)是量子信息科学和相关器件领域非常有潜力的材料。在TMD单分子层中,去相时间和非均匀性是任何量子信息应用的关键参数。在TMD异质结构中,耦合强度和层间激子寿命也是值得关注的参数。通常,TMD材料研究中的许多演示只能在样本上的特定点实现,这对应用的可拓展性提出了挑战。美国密歇根大学课题组使用了多维相干成像光谱(Multi-dimensional coherent spectroscopy, 简称MDCS),阐明了MoSe2单分子层的基础物理性质——包括去相、不均匀性和应变,并确定了量子信息的应用前景。此外,课题组将同样的技术应用于MoSe2/WSe2异质结构研究。尽管存在显著的应变和电介质环境变化,但相干和非相干耦合和层间激子寿命在整个样品中大多是稳健的。图5. (a)hBN封装的MoSe2/WSe2异质结构的白光图像。(b)MoSe2/WSe2异质结构在图(a)中的标记的三个不同样本点处的低功率低温MDCS光谱。(c)图(b)中所示的四个峰值的FWM(Four-Wave Mixing)四波混频积分图。(d)MoSe2/WSe2异质结构上的MoSe2共振能量图。(e)MoSe2/WSe2异质结构的WSe2共振能量图。(f)所有采样点的MoSe2共振能量与WSe2共振能量【参考】Eric Martin, et al; Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides, J. Chem. Phys. 156, 214704 (2022) 3. 掺杂MoSe2单层中吸引和排斥极化子的量子动力学研究      当可移动的杂质被引入并耦合到费米海时,就形成了被称为费米极化子的新准粒子。费米极化子问题有两个有趣但截然不同的机制: (i)吸引极化子(AP)分支与配对现象有关,跨越从BCS超流到分子的玻色-爱因斯坦凝聚;(ii)排斥分支(RP),这是斯通纳流动铁磁性的物理基础。二维系统中的费米极化子的研究中,许多关于其性质的问题和争论仍然存在。黄迪教授课题组使用了Monstr Sense公司的全共线多功能超快光谱仪BIGFOOT研究了掺杂的MoSe2单分子层。课题组发现观测到的AP-RP能量分裂和吸引极化子的量子动力学与极化子理论的预测一致。随着掺杂密度的增加,吸引极化子的量子退相保持不变,表明准粒子稳定,而排斥极化子的退相率几乎呈二次增长。费米极化子的动力学对于理解导致其形成的成对和磁不稳定性至关重要。图6. 单层MoSe2在不同栅极电压下的单量子重相位振幅谱【参考】Di HUANG, et al; Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer, PHYSICAL REVIEW X 13, 011029 (2023)
211人看过
2023-05-26 11:43:55全共线多功能超快光谱仪与高精度激光扫描显微镜,二维材料与超快光学实验必备!
全共线多功能超快光谱仪BIGFOOTMONSTR Sense Technologies是由密歇根大学研究人员成立的科研设备制造公司。该公司致力于研发为半导体研究应用而优化的超快光谱仪和显微镜,突破性的技术可将光学器件和射频电子器件耦合在一起,以稳健的方式测量具有干涉精度的光学信号,真正实现一套设备、一束激光、多种功能。图1. 全共线多功能超快光谱仪BIGFOOT全共线多功能超快光谱仪BIGFOOT不仅兼具共振和非共振超快光谱探测,还可以兼容瞬态吸收光谱(Transient absorption (TAS))、相干拉曼光谱(Coherent Raman Spectroscopy (CRS))、多维相干光谱探测(Multidimensional Coherent Spectroscopy (MDCS))。开创性的全共线光路设计,使其可以与该公司研发的高精度激光扫描显微镜(NESSIE)联用,实现超高分辨超快光谱显微成像。全共线多功能超快光谱仪的开发也充分考虑了用户的使用体验,系统软件可自动调控参数,光路自动对齐、无需校正等特点都使得它简单易用。全共线多功能超快光谱仪BIGFOOT主要技术参数:若您对设备有任何问题,欢迎扫码咨询!高精度激光扫描显微镜NESSIEMONSTR Sense Technologies的高精度激光扫描显微镜NESSIE可用入射激光快速扫描样品,在几秒钟内就能获得高光谱图像。该设备可适配不同高度的样品台和低温光学恒温器,物镜高度最多可变化5英寸,大样品尺寸同样适用。NESSIE显微镜是具有独立功能,可以与几乎任何基于激光测量与高分辨率成像的设备集成在一起,也非常适合与该公司研发的全共线多功能超快光谱仪集成。图2. 高精度激光扫描显微镜NESSIE高精度激光扫描显微镜-NESSIE的输入信号为单个激光光束,输出信号为样品探测点收集的单个反向传播光束,这样的光路设计确保了反传播信号在扫描图像时不会相对于输入光束漂移,因而非常适用于激光的实验中的成像显微镜系统。图3. 使用NESSIE在室温下测量的GaAs量子阱的图像。a) 用相机测量的白光图像。b) 用调谐到GaAs带隙的80MHz激光器(5mW激光输出)进行激光扫描线性反射率测量。c) 同时测量的激光扫描四波混频图像揭示了影响GaAs层的亚表面缺陷若您对设备有任何问题,欢迎扫码咨询!BIGFOOT+NESSIE应用案例:01高精度激光扫描显微镜用于材料表征美国密歇根大学课题组通过使用基于非线性四波混频(FWM)技术的多维相干光谱MDCS测量先进材料的非线性响应,利用激子退相和激子寿命来评估先进材料的质量。课题组使用通过化学气相沉积生长的WSe2单分子层作为一个典型的例子来证明这些功能。研究表明,提取材料参数,如FWM强度、去相时间、激发态寿命和暗/局部态分布,比目前普遍的技术,包括白光显微镜和线性微反射光谱学,可以更准确地评估样品的质量。在室温下实时使用超快非线性成像具有对先进材料和其他材料的快速原位样品表征的潜力。图4.  (a)通过拟合时域单指数衰减得到的样本的去相时间图,在图(a)中用三角形标记的选定样本点处的FWM振幅去相曲线【参考】Eric Martin, et al; Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022).02二维材料中激子相互作用和耦合的成像研究过渡金属二卤代化合物(TMDs)是量子信息科学和相关器件领域非常有潜力的材料。在TMD单分子层中,去相时间和非均匀性是任何量子信息应用的关键参数。在TMD异质结构中,耦合强度和层间激子寿命也是值得关注的参数。通常,TMD材料研究中的许多演示只能在样本上的特定点实现,这对应用的可拓展性提出了挑战。美国密歇根大学课题组使用了多维相干成像光谱(Multi-dimensional coherent spectroscopy, 简称MDCS),阐明了MoSe2单分子层的基础物理性质——包括去相、不均匀性和应变,并确定了量子信息的应用前景。此外,课题组将同样的技术应用于MoSe2/WSe2异质结构研究。尽管存在显著的应变和电介质环境变化,但相干和非相干耦合和层间激子寿命在整个样品中大多是稳健的。图5. (a)hBN封装的MoSe2/WSe2异质结构的白光图像。(b)MoSe2/WSe2异质结构在图(a)中的标记的三个不同样本点处的低功率低温MDCS光谱。(c)图(b)中所示的四个峰值的FWM(Four-Wave Mixing)四波混频积分图。(d)MoSe2/WSe2异质结构上的MoSe2共振能量图。(e)MoSe2/WSe2异质结构的WSe2共振能量图。(f)所有采样点的MoSe2共振能量与WSe2共振能量【参考】Eric Martin, et al; Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides, J. Chem. Phys. 156, 214704 (2022)03掺杂MoSe2单层中吸引和排斥极化子的量子动力学研究当可移动的杂质被引入并耦合到费米海时,就形成了被称为费米极化子的新准粒子。费米极化子问题有两个有趣但截然不同的机制:(i)吸引极化子(AP)分支与配对现象有关,跨越从BCS超流到分子的玻色-爱因斯坦凝聚;(ii)排斥分支(RP),这是斯通纳流动铁磁性的物理基础。二维系统中的费米极化子的研究中,许多关于其性质的问题和争论仍然存在。美国德克萨斯大学奥斯汀分校李晓勤教授课题组使用了Monstr Sense公司的全共线多功能超快光谱仪BIGFOOT研究了掺杂的MoSe2单分子层。课题组发现观测到的AP-RP能量分裂和吸引极化子的量子动力学与极化子理论的预测一致。随着掺杂密度的增加,吸引极化子的量子退相保持不变,表明准粒子稳定,而排斥极化子的退相率几乎呈二次增长。费米极化子的动力学研究对于理解导致其形成的配对和磁不稳定性至关重要。图6. 单层MoSe2在不同栅极电压下的单量子重相位振幅谱【参考】Di HUANG, et al; Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer, PHYSICAL REVIEW X 13, 011029 (2023)若您对设备有任何问题,欢迎扫码咨询!
199人看过
气体密度继电器
台式总氮检测仪
orp测量仪
WT333E功率分析仪
铜片腐蚀检测仪
WXT535气象变送器
高功率DFB半导体激光器
厂用电系统母线快速保护
液相锈蚀自动测试仪
自燃点测定方法
总沉淀物测定仪
油品氧化安定
自燃点分析仪
FP311C
变频器低电压穿越柜
机械杂质测定方法
机械杂质检测仪
变频器抗晃
总氮监测仪
RK2674B
WXT532气象变送器
分解产物分析仪
高功率半导体激光器
DVR动态电压调节装置
水热样品脱附
高压母线快速保护
母联备自投
分解产物测定仪
备用电源自动投入
横河WT5000
长光程气体池
分解产物检测仪
气体综合测定仪
便携式可燃气体检漏仪
便携式总磷分析仪
WT310EH功率分析仪