2025-01-10 10:49:44等离子体质谱
等离子体质谱是一种高效的分析技术,其工作原理基于等离子体激发和质谱检测原理。该技术利用等离子体的高温使样品原子化并激发成离子,随后通过质谱仪对离子进行质量和电荷比的分析,从而实现对样品中元素的定性和定量分析。等离子体质谱具有灵敏度高、分析速度快、多元素同时检测等优点,广泛应用于地质、环境、材料科学等领域。

资源:5278个    浏览:11展开

等离子体质谱相关内容

产品名称

所在地

价格

供应商

咨询

ICP-MS7500 安捷伦电感耦合等离子体质谱
国内 上海
¥460000
俊齐仪器设备(上海)有限公司

售全国

我要询价 联系方式
ICP-MS / ICP 电感耦合等离子体质谱
国内 上海
面议
上海科学仪器有限公司

售全国

我要询价 联系方式
安捷伦ICP-MS 7500 电感耦合等离子体质谱ICP-MS/MS
国外 美洲
¥450000
俊齐仪器设备(上海)有限公司

售全国

我要询价 联系方式
PerkinElmer NexION 2200电感耦合等离子体质谱ICP-MS
国外 美洲
面议
苏州赛力威仪器有限公司

售全国

我要询价 联系方式
Agilent 7500 ICP-MS电感耦合等离子体质谱
国内 天津
面议
天津市普伦科技开发有限公司

售全国

我要询价 联系方式
2019-06-24 10:47:35单颗粒电感耦合等离子体质谱分析法的原理与应用
      纳米技术是一个快速发展的新兴领域,其发展和前景也给科学家和工程师们带来了许多巨大的挑战。纳米颗粒正在被应用于众多材料和产品之中,如涂料(用于塑料、玻璃和布料等)、遮光剂、KJ绷带和服装、MRI造影剂、生物医学元素标签和燃料添加剂等等。然而,纳米颗粒的元素组成、颗粒数量、粒径和粒径分布的同步快速表征同样也是难题。对于无机纳米颗粒,Z为满足上述特点的技术就是在单颗粒模式下应用电感耦合等离子体质谱分析法(ICP-MS)。使用ICP-MS分析单纳米颗粒时,需要采用有别于溶解元素测量的另一种不同方式。本文介绍了单颗粒ICP-MS测量背后的理论,并通过溶解态元素的分析进行比较,提出差异。了解单颗粒ICP-MS分析      如需通过ICP-MS有效地检测和测量单纳米颗粒,则需以不同于溶解样品分析时的方式操作仪器。溶解样品和单纳米颗粒分析的响应信号如图1所示。在图1a中,稳态信号来自于溶解元素的测量;检测单颗粒时的信号呈现脉冲状,如图1b中60 nm银颗粒检测信号所示。在图1b中,每个峰代表一个颗粒。数据采集方式的差异是理解单颗粒分析的关键,要理解这部分内容,Z为简单的方法就是分析与比较溶解态元素和颗粒测量时所涉及的流程。使用ICP-MS进行溶解态分析      在测量溶解态元素时,气溶胶进入等离子体,液滴得到去溶剂化与电离化。产生的离子进入四极杆,通过其质荷比(m/z)进行分辨。四极杆在各质荷比(m/z)停留一段时间,然后移动到下一质荷比(m/z);各质荷比(m/z)的分析时间被称作“驻留时间”。在各驻留时间的测量完成之后,执行下一次测量之前,通过一定时间进行电子器件的稳定。该时间段被称作“稳定时间”,即暂停和处理时间。在分析溶解态元素时,产生的信号基本上属于稳态信号,如图2a所示。然而,考虑到驻留时间和稳定时间,由于存在电子器件的稳定时间,因此检测信号其实是不连续的,而这是纳米颗粒分析时的一个关键点(图2b)。图1. a)溶解分析物测量的连续信号;b)60 nm银纳米颗粒测量的信号。对于溶解态离子,因为元素溶解并产生连续信号,所以错过的部分信号并不重要。使用ICP-MS进行单颗粒分析       以相同于溶解态溶液的方式,将水溶液中的颗粒引入等离子体。当液滴在等离子体中去溶剂化时,产生的颗粒经过电离化产生大量离子(每个颗粒形成一个离子云)。随后,离子进入四极杆。然而,使用传统的ICP-MS数据收集方式,且在驻留时间和稳定时间之间交替时,无法始终检测到离子云。例如,如果离子云恰好落在驻留时间窗口内,则可以被检测到。否则,如果离子云在稳定时间内进入四极杆或到达检测器,则无法被检测到,从而导致计数不准确。如图3a所示,如果单颗粒(“信号”峰)的离子云落在驻留时间窗口之外,则可能无法被检测到。如图3b所示,当单颗粒的离子云落入驻留时间窗口内时,可以检测到该离子云。当快速连续检测到多个颗粒时,所得到的信号是一系列峰,各个峰都来自于某一颗粒,具体如图3c所示。图2. a)溶解态元素测量的连续信号;b)连续信号,其驻留时间和稳定时间重叠,仅在停留时间内收集数据。单颗粒ICP-MS的时间参数       图4显示的是ICP-MS分析中涉及的时间参数。三个坐标轴分别代表信号强度、质荷比(m/z)和时间。对于常规/溶解态分析,质荷比轴和信号强度轴的重要性Z高:所得出的谱图是m/z与信号强度的图表。在考虑四极杆从质荷比到质荷比的移动速度时,时间轴具有重要意义,而此参数被称为“四极杆扫描速度”。在测量瞬态信号的多个元素(如激光烧蚀和多元素形态分析)时,四极杆扫描速度具有重要作用。图3. a)单纳米颗粒的信号落在驻留时间/测量窗口之外,因此未被检测到;b)单纳米颗粒的信号落入驻留时间/测量窗口内,因此被检测到;c)多个纳米颗粒的信号落入驻留时间/测量窗口内并被检测到。图4. ICP-MS分析的时间参数。      在测量单个m/z的瞬态信号时,时间轴具有较高的重要性,因为必须获取足够的数据点以形成一个数据峰。例如,使用HPLC/ICP-MS时,通常4-10点/秒足以形成一个峰。HPLC峰与单颗粒信号之间的对比显示,各颗粒离子团的峰宽度通常是HPLC产生的峰宽的千分之一。因此,单颗粒分析获取数据的速度必须非常快。时间轴变为“瞬态数据采集速度”,其中涉及驻留时间和稳定时间。瞬态数据采集速度越快,系统就越适用于单颗粒分析。      在单颗粒ICP-MS中,瞬态数据的采集速度由两个参数组成:驻留时间(读取时间)和稳定时间(暂停和处理时间)。十分重要的是,ICP-MS采集信号所需的驻留时间少于颗粒瞬态时间,从而避免因部分颗粒合并、颗粒重合和团聚/聚集产生的错误信号。稳定时间越短,颗粒遗漏的可能性就越小。图5展示了驻留时间(100μs)和时间窗口恒定的条件下,缩短稳定时间的重要性。如图5a所示,仅有两个100μs的窗口用以检测颗粒;其余时间暂停采集信号,无法获取数据。在这种情况下,一秒钟内仅进行约100次测量。因此,大部分时间都被浪费了。图5b采用相同的驻留时间窗口,但稳定时间为100μs。因此,测量和寻找纳米颗粒所花费的时间更长,即一秒钟内进行约5,000次测量。但是,仍然有一半的时间被浪费了。图5c显示的是不存在稳定时间的理想情况。一秒钟内可进行10,000次测量,不存在时间浪费的情况,所有时间皆用于寻找纳米颗粒,这是单颗粒ICP-MS的理想情况。图5.稳定时间和驻留时间对ICP-MS测量的影响:a)沉稳定时间比驻留时间长得多;b)稳定时间等于驻留时间;c)不存在稳定时间。图6.驻留时间和稳定时间对单纳米颗粒测量的影响:a)检测到两个颗粒;b)检测到一个颗粒;c)检测到一个颗粒的前半部分;d)检测到一个颗粒的后半部分;e)未检测到颗粒。单颗粒多次测量:理想情况       参见图6了解快速数据采集在单颗粒测量过程中的重要性。在该图中,上部表示单颗粒脉冲,其与驻留时间和稳定时间相关,而下部则表示相应的质谱仪响应(强度对时间)。如图6a所示,在单一驻留时间窗口中检测到两个颗粒,导致响应强度相当于检测到一个颗粒时的两倍,此时并非理想情况。如果仪器驻留时间超过纳米颗粒的瞬态脉冲,则很容易遇到这种情况。如图6b所示,在驻留时间窗口中检测到单个颗粒,产生的信号是图6a的一半大小,得到准确的数据。图6c和图6d显示的是不理想的情况,其中仅检测到颗粒的部分离子脉冲,信号强度因此较小,无法jing准确定颗粒的尺寸。图6e显示的是Z不理想的情况,其中的颗粒落在驻留时间窗口之外,并未被检测到。这些例子证明了快速连续数据采集功能的重要性。在该功能中,数据的连续采集不受到稳定时间的影响,保证了颗粒计数的准确性,使每个进入等离子体的颗粒都被纳入计数。      快速连续数据采集的另一个好处是可以从单个颗粒获得多个数据点,从而消除颗粒遗漏,或仅检测到颗粒部分离子云的情况。图7显示了具体的测量方法。如图7a所示,来自单个颗粒的信号经过多次测量。将各时间片段的信号绘制成图,构成一个峰。当检测到多个颗粒时,产生的峰是一系列时间片段,具体如图7b所示。       图8a和8b显示了数据点如何绘制为单颗粒的信号峰。如图8a所示,以快速连续模式(无稳定时间)收集数据时,驻留时间为100 µs。在前1.6秒,可以看出峰由6个点确定。如图8b所示,驻留时间减少至50 µs,可使获取的数据点达到两倍之多。因此,峰形由12个点确定,峰形更加明确。这一示例证明了尽可能多采集数据点的好处。图7.各颗粒多个测量值的测量对以下方面的影响:a)单颗粒;及b)顺序检测的多颗粒。图8.取得各颗粒多个测量值的能力:a)各颗粒的6个数据点;b)各颗粒的12个数据点。总结如上文所述,相较于溶解态元素的测量,使用ICP-MS测量单颗粒有着很大不同。在测量单颗粒时,Z重要的因素是获取数据的速度:由于颗粒电离时间大约为微秒级,因此关键的是保证快速数据采集,以及在多次测量之间消除稳定时间。连续测量功能支持单颗粒电离后被多次读数,这有助于更为准确地确定颗粒尺寸。对于单颗粒ICP-MS分析,在小于或等于100 µs的驻留时间内进行连续数据采集是纳米颗粒精确计数和粒度确定的Z重要仪器要求。
1149人看过
2023-03-14 12:04:54等离子去胶机(Plasma Cleaner)
等离子去胶机(Plasma Cleaner) 为何要去除光刻胶?在现代半导体生产过程中,会大量使用光刻胶来将电路板图图形通过掩模版和光刻胶的感光与显影,转移到晶圆光刻胶上,从而在晶圆表面形成特定的光刻胶图形,然后在光刻胶的保护下,对下层薄膜或晶圆基底完成进行图形刻蚀或离子注入,最后再将原有的光刻胶彻底去除。去胶是光刻工艺中的最后一步。在刻蚀/离子注入等图形化工艺完成后,晶圆表面剩余光刻胶已完成图形转移和保护层的功能,通过去胶工艺进行完全清除。光刻胶去除是微加工工艺过程中非常重要的环节,光刻胶是否彻底去除干净、对样片是否有造成损伤,都会直接影响后续集成电路芯片制造工艺效果。 半导体光刻胶去除工艺有哪些?半导体光刻胶去除工艺,一般分成两种,湿式去光刻胶和干式去光刻胶。湿式去胶又根据去胶介质的差异,分为氧化去胶和溶剂去胶两种类别。干式去胶适合大部分去胶工艺,去胶彻底且速度快,是现有去胶工艺中zui好的方式。 一、等离子去胶机简述:氧等离子去胶是利用氧气在微波发生器的作用下产生氧等离子体,具有活性的氧等离子体与有机聚合物发生氧化反应,使有机聚合物被氧化成水蒸汽和二氧化碳等排除腔室,从而达到去除光刻胶的目的,这个过程我们有时候也称之为灰化或者剥离。氧等离子去胶相比于湿法去胶工艺更为简单、适应性更好,去胶过程纯干法工艺,无液体或者有机溶剂参与。当然我们需要注意的是,这里并不是说氧等离子去胶工艺100%好于湿法去胶,同时也不是所有的光刻胶都适用于氧等离子去胶,以下几种情形我们需要注意:① 部分稳定性极高的光刻胶如SU-8、PI(聚酰亚胺),往往胶厚也比较大,纯氧等离子体去胶速率也比较有限,为了保证快速去胶,往往还会在工艺气体中增加氟基气体增加去胶速率,因此不只是氧气是反应气体,有时候我们也需要其他气体参与;② 涂胶后形成类非晶态二氧化硅的HSQ光刻胶。由于其构成并不是单纯的碳氢氧,所以是无法使用氧等离子去胶机来实现去胶;③ 当我们的样品中有其他需要保留的结构层本身就是有机聚合物构成的,在等离子去胶的过程中,这些需要保留的层也可能会在氧等离子下发生损伤;④ 样品是由容易氧化的材料或者有易氧化的结构层,氧等离子去胶过程,这些材料也会被氧化,如金属AG、C、CR、Fe以及Al,非金属的石墨烯等二维材料; 市面上常见氧等离子去胶机按照频率可分为微波等离子去胶机和射频等离子去胶机两种,微波等离子去胶机的工作频率为2.45GHz,射频等离子去胶机的工作频率为13.5MHz,更高的频率决定了等离子体拥有更高的离子浓度、更小的自偏压,更高的离子浓度决定了去胶速度更快,效率更高;更低的自偏压决定了其对衬底的刻蚀效应更小,也意味着去胶过程中对衬底无损伤,而射频等离子去胶机其工作原理与刻蚀机相似,结构上更加简单。因此,在光电器件的加工中,去胶机的选择更推荐使用损伤更小的微波等离子去胶机。 二、等离子清洗去胶机的工作原理:氧气是干式等离子体脱胶技术中的首要腐蚀气体。它在真空等离子体脱胶机反应室内高频和微波能的作用下,电离产生氧离子、自由氧原子O*、氧分子和电子混合的等离子体,其间氧化能力强的自由氧原子(约10-20%)在高频电压作用下与光刻胶膜发生反应:O2→O*+O*,CxHy+O*→CO2↑+H2O↑。反应后产生的CO2和H2O然后被抽走。 三、等离子去胶机的优势:1、等离子清洗机的加工过程易于控制、可重复且易于自动化;使用等离子扫胶机可以使得清洗效率获得更大的提高。整个清洗工艺流程几分钟内即可完成,因此具有产率高的特点2、等离子扫胶机清洗对象经等离子清洗之后是干燥的,不需要再经干燥处理即可送往下一道工序,可以提高整个工艺流水线的处理效率;3、等离子扫胶机使得用户可以远离有害溶剂对人体的伤害,同时也避免了湿法清洗中容易洗坏清洗对象的问题;4、避免使用ODS有害溶剂,这样清洗后不会产生有害污染物,因此这种清洗方法属于环保的绿色清洗方法;5、等离子去胶机采用无线电波范围的高频产生的等离子体与激光等直射光线不同,等离子体的方向性不强,这使得它可以深入到物体的微细孔眼和凹陷的内部完成清洗任务,因此不需要过多考虑被清洗物体的形状;6、等离子去胶机在完成清洗去污的同时,还可以改良材料本身的表面性能,如提高表面的润湿性能、改良膜的黏着力等,这在许多应用中都是非常重要的。 四、等离子去胶的主要影响因素:频率选择:频率越高,氧越易电离形成等离子体。频率太高,以至电子振幅比其平均自由程还短,则电子与气体分子碰撞几率反而减少,使电离率降低。一般常用频率为 13.56MHz及2.45GHZ 。功率影响:对于一定量的气体,功率大,等离子体中的的活性粒子密度也大,去胶速度也快;但当功率增大到一定值,反应所能消耗的活性离子达到饱和,功率再大,去胶速度则无明显增加。由于功率大,基片温度高,所以应根据工艺需要调节功率。真空度的选择:适当提高真空度,可使电子运动的平均自由程变大,因而从电场获得的能量就大,有利电离。另外当氧气流量一定时,真空度越高,则氧的相对比例就大,产生的活性粒子浓度也就大。但若真空度过高,活性粒子浓度反而会减小。氧气流量的影响:氧气流量大,活性粒子密度大,去胶速率加快;但流量太大,则离子的复合几率增大,电子运动的平均自由程缩短,电离强度反而下降。若反应室压力不变,流量增大,则被抽出的气体量也增加,其中尚没参加反应的活性粒子抽出量也随之增加, 因此流量增加对去胶速率的影响也就不甚明显。 五、等离子去胶机的应用:1、光刻胶的去除、剥离或灰化2、SU-8的去除/ 牺牲层的去除3、有机高分子聚合物的去除4、等离子去除残胶/去浮渣/打底膜5、失效分析中的扁平化处理6、表面沾污清除和内腐蚀(深腐蚀)应用7、清洗微电子元件,电路板上的钻孔或铜线框架8、剥离金属化工艺前去除浮渣9、提高黏附性,消除键合问题10、塑料的表面改型:O2处理以改进涂覆性能11、产生亲水或疏水表面
363人看过
2025-01-20 19:45:14铁谱仪多少钱
铁谱仪多少钱:影响铁谱仪价格的因素分析 铁谱仪作为一种用于金属材料分析的先进设备,广泛应用于冶金、机械加工、汽车、航空航天等行业。其主要功能是通过分析金属表面形成的铁谱,帮助用户掌握材料的成分、性能等关键信息,提升生产效率和产品质量。许多人在购买铁谱仪时,常常会关注其价格问题。本文将从多个角度分析铁谱仪的价格区间,帮助您了解影响其定价的主要因素,做出明智的采购决策。 1. 铁谱仪的类型与技术参数 铁谱仪的价格受其类型和技术规格的直接影响。市面上常见的铁谱仪有手持式和台式两种,手持式铁谱仪相对便宜,适用于小型检测需求,而台式铁谱仪则适合更复杂的金属分析,具备更高的测量精度和更强大的功能。这些不同类型的铁谱仪根据测量范围、检测精度、数据处理能力等参数的差异,价格差异也较大。一般来说,手持式铁谱仪的价格可能在几千元到一万元之间,而台式铁谱仪的价格则可能高达几万元甚至更高。 2. 品牌与制造商的影响 品牌影响力是铁谱仪价格的另一大因素。知名品牌的铁谱仪通常会在技术创新、性能稳定性、售后服务等方面具有明显优势,因此其价格往往较高。而一些非主流品牌的铁谱仪价格较为亲民,但在产品的质量保障和技术支持方面可能存在一定差距。因此,用户在选择铁谱仪时,除了关注价格外,还应考虑品牌的信誉度和制造商的技术服务能力。 3. 设备的附加功能与定制化需求 现代铁谱仪往往配备一些附加功能,如无线数据传输、实时分析、自动报告生成等,这些功能能够显著提高操作的便捷性和数据处理的效率。因此,具备更多功能的铁谱仪通常价格较高。一些客户可能有特殊的定制需求,比如特定的测量范围或者针对特定行业的应用,定制化的铁谱仪往往会比标准版本贵上不少。 4. 市场供需与售后服务 铁谱仪的价格还会受到市场供需关系的影响。随着国内外对铁谱仪需求的增加,市场上许多制造商都在加大生产力度,导致竞争加剧。这种竞争有时会压低价格,但也可能因为技术进步而带来价格的提升。售后服务也是价格的重要组成部分,一些提供较长质保期和全面技术支持的厂商,其铁谱仪价格通常也会更高。 5. 结论 总体而言,铁谱仪的价格是由多个因素共同作用的结果。用户在采购时不仅要关注设备的初期投资,还需考虑其性能、品牌、功能以及售后服务等方面。通过综合评估这些因素,可以在满足使用需求的基础上,选择性价比高的产品,确保获得佳的投资回报。如果您对铁谱仪的具体型号和价格有所疑问,可以联系相关供应商进行详细咨询,以确保选购到符合实际需求的设备。
34人看过
2024-04-26 11:21:59空气消毒机除了等离子 紫外线 臭氧 还有其他消毒方式吗
空气消毒机除了等离子 紫外线 臭氧 还有其他方式吗?
94人看过
2022-08-25 11:12:04揭秘远程微波等离子去胶机
NPC-3500型微波等离子去胶机微波等离子去胶机工作原理:为了产生等离子,系统使用远程微波源。氧在真空环境下受高频及微波能量作用,电离产生具有强氧化能力的游离态氧原子,它在高频电压作用下与光刻胶薄膜反应,反应后生成的 CO2 和 H2O 通过真空系统被抽走。CF4 气体可以达到更快速的去胶速率,尤其对于难以去除的光刻胶也具备出色的去除能力。在微波等离子体氛围中,活性气体被等离子化,将跟光刻胶产生化学反应,反应生产的化合物通过真空泵被快速抽走,可以达到高效的去胶效果。该去胶机微波源为远程微波源,轰击性的离子将被过滤掉之后微波等离子进入到工艺腔室参与反应,因此可以实现无损的去胶。微波等离子去胶机主要用途:MEMS压力传感器加工工艺中光刻胶批量处理;去除有机或无机物,而无残留;去胶渣、深刻蚀应用;半导体晶圆制造中光刻胶及SU8工艺;平板显示生产中等离子体预处理;太阳能电池生产中边缘绝缘和制绒;先进晶片(芯片)封装中的衬底清洁和预处理;NANO-MASTER微波等离子去胶机系统优势:1)Downstream结构,等离子分布均匀;2)远程微波,无损伤;3)远程微波,支持金属材质;4)批处理,一次可支持1-25片;5)微波等离子,可以深入1um以内的孔隙进行清洗;6)光刻胶去除的方式为化学方式,而非物理轰击,可实现等离子360度全方位的分布;7)旋转样品台,进一步提高去胶的均匀性。8) 腔体内无电极,更高洁净度;9)微波波段无紫外排放,操作更安全;10)高电子密度,去胶效率高。
281人看过
迷你超声波清洗器
可程式恒温恒湿试验箱使用说明
局部放电测试仪使用方法
imada推拉力计
启普发生器
浮子式气体流量计
干式变压器横流式冷却风机
灰度光刻设备
VOC tenax管
便携式测温仪
炭黑振筛机
浮子式气体流量控制计
在线TOC水质分析仪
爱德华真空规处理
远红外放射率检测
真空固相萃取装置
干式变压器横风机
邵氏硬度计原理
固相萃取-浓缩定容
环氧乙烷检测仪
自动原子荧光光谱仪
便携式氧气气体检测仪
离子色谱-质谱
力值显示控制仪
在线固相萃取-气相色谱
43B电能质量分析仪
100nm的超滤离心管
干式变压器温控器
orp短路校准
医用耐压测试仪操作规程
路面状况传感器
在线固相萃取-气相色谱/质谱
全自动在线固相萃取-气相色谱
吹扫捕集-气相色谱-质谱联用仪
紫外成像仪
四丁基氢氧化铵