- 2025-01-21 09:29:54低温液氦样品杆
- 低温液氦样品杆是用于低温物理实验中的关键设备,它能够将样品置于液氦环境下,实现极低温度的测量与研究。该样品杆通常采用高导热、低磁性的材料制成,以确保样品在低温下的热稳定性和磁性纯净度。其设计精密,能够有效隔绝外界热辐射和磁场干扰,为科学实验提供稳定、可靠的低温环境。低温液氦样品杆广泛应用于超导材料、量子物理、凝聚态物理等领域的研究,是探索物质在极低温度下新奇性质的重要工具。
资源:14135个 浏览:39次展开
低温液氦样品杆相关内容
低温液氦样品杆产品
产品名称
所在地
价格
供应商
咨询

- 超精细多功能无液氦低温光学恒温器
- 国外 美洲
- 面议
-
清砥量子科学仪器(北京)有限公司
售全国
- 我要询价 联系方式

- 超低振动低温光学恒温器(无液氦)
- 国外 美洲
- 面议
-
清砥量子科学仪器(北京)有限公司
售全国
- 我要询价 联系方式

- 无液氦低温STM/qPlusAFM系统
- 国外 美洲
- 面议
-
清砥量子科学仪器(北京)有限公司
售全国
- 我要询价 联系方式

- 无液氦超导磁体低温系统-TeslatronPT
- 国外 美洲
- 面议
-
清砥量子科学仪器(北京)有限公司
售全国
- 我要询价 联系方式

- 无液氦超导磁体低温系统-TeslatronPT
- 国外 美洲
- 面议
-
清砥量子科学仪器(北京)有限公司
售全国
- 我要询价 联系方式
低温液氦样品杆问答
- 2025-03-25 13:15:15氦光泵磁力仪多少钱
- 氦光泵磁力仪多少钱?这是许多科研工作者、实验室工程师或生产厂商在选择磁力仪时常关注的问题之一。氦光泵磁力仪,作为一种高精度的测量工具,在现代物理学、材料科学以及相关领域中扮演着至关重要的角色。它能够准确测量极微小的磁场变化,是进行量子物理实验、精密测量和材料分析不可或缺的设备。本文将深入探讨氦光泵磁力仪的价格因素,并对市场上不同品牌、型号的价格进行分析,帮助您在选购时做出更为明智的决策。 在探讨氦光泵磁力仪的价格时,首先需要了解影响其价格的几个关键因素。其一是仪器的技术规格,氦光泵磁力仪通常根据其灵敏度、测量范围以及分辨率来定价。高灵敏度的设备通常具有更高的价格,因为它们能够探测到更微弱的磁场变化,适用于更为复杂和精密的实验。仪器的品牌和制造商也是影响价格的重要因素。一些知名品牌由于研发技术的先进性和长期积累的信誉,往往会定价较高,但相应的,产品质量、售后服务及技术支持也会更为可靠。市场需求和生产规模也会对价格产生影响,供求关系较为紧张时,价格也可能有所上升。 根据不同市场调研,氦光泵磁力仪的价格范围通常从几万到几十万不等。入门级的氦光泵磁力仪价格大约在10万元左右,而高端型号则可能超过50万元,甚至更高。具体价格还需根据客户的需求而定,包括测量的精度、仪器的耐用性以及特定功能的支持等。在选择时,除了关注价格外,建议综合评估仪器的性能、售后服务、技术支持等因素,确保选购到符合自己需求的设备。 氦光泵磁力仪的价格差异较大,选择时不仅需要关注价格本身,还应充分考虑产品的技术规格和品牌信誉。通过对市场的深入了解和需求分析,您可以选购到既经济又高效的氦光泵磁力仪,满足您的科研或工业需求。在选购氦光泵磁力仪时,专业的技术支持和后续服务同样至关重要,确保仪器的稳定性和长期可靠性。
106人看过
- 2023-06-21 13:55:48《Small》:精确调控样品磁性!氦离子辐照改善磁畴壁动力学
- 近年来,人们在不断探索新型低能耗,高存储密度的新型磁存储材料。特别是对于磁畴壁动力学、斯格明子等方面的研究吸引了大批科研人员的目光。随着研究的深入,制备出具有特定磁各项异性的材料并且进行精细的调控变的尤为重要。在对样品特性精细调控的技术中,利用氦离子辐照是对样品无损坏的一种高精度手段。氦离子辐照具有精度高、均匀性好、条件更加灵活、易于控制等优势,与其它改性方法相比,有利于器件或集成电路的大规模生产。基于此,法国Spin-Ion 公司经多年研发推出离子辐照磁性精细调控系统Helium-S®。该系统采用创新的离子束技术,可以通过超紧凑和快速的氦离子束设备精确控制原子间的位移,使其能够在原子尺度上加工材料,并通过离子束工艺来调控薄膜和异质结构。设备一经推出,便受到广大科学家的关注,截止目前已有20多家科研和工业用户以及合作伙伴使用该技术,国内也在北航和复旦等高校安装该系统,其独有的技术正受到来自相关科研圈和工业领域越来越多的认可。 近期,来自于法国格勒诺布尔-阿尔卑斯大学CNRS-Institut Néel实验室的Stefania Pizzini团队联合法国Spin-Ion Technologies公司的两名工程师利用离子辐照磁性精细调控系统Helium-S®对Pt/Co/AlOx磁性薄膜进行了磁性调控研究。文章以“Improving Néel Domain Walls Dynamics and Skyrmion Stability Using He Ion Irradiation”为题发表在Small上。氦离子辐照量对样品的磁各向异性的影响 文章讨论了使用离子辐照磁性精细调控系统Helium-S®对Pt/Co/AlOx三层膜的磁性能产生的影响。研究人员发现,氦离子辐照可以改善Néel磁畴壁的动力学和斯格明子的稳定性。辐照可以降低垂直磁各向异性(PMA),而不影响界面Dzyaloshinskii-Moriya相互作用(DMI)的强度。这使得磁畴壁可以在较低的磁场下达到更大的速度。该研究表明,将PMA与DMI分离对于基于磁畴壁动力学的低能耗设备的设计是有益的。同时,辐照还可以调节斯格明子的大小和稳定性,使其更加稳定并且可以在更高的磁场下存在。这些结果表明氦离子辐照可以对基于磁畴壁动力学和斯格明子的低能耗设备的设计产生积极影响。氦离子辐照量对样品的磁畴壁和斯格明子的影响 该项工作中使用的离子辐照磁性精细调控系统Helium-S®已经成为磁性薄膜研究与性能调控的重要手段。该系统可以对直径1英寸的晶圆进行扫描辐照,具有精度高,可控性好等特点。 应用领域:☛ 磁性随机存储器(MRAM):自旋转移矩磁性随机存储(STT-MRAM),自旋轨道矩磁性随机存储(SOT-MRAM),磁畴壁磁性随机存储(DW-MRAM)等;☛ 自旋电子学:斯格明子,磁性隧道结,磁传感器等;☛ 磁学相关:磁性氧化物,多铁性材料;☛ 其他方向:薄膜改性,芯片加工,仿神经器件,逻辑器件等。 产品特点:☛ 可通过超紧凑和快速的氦离子束设备精确控制原子间的位移,通过氦离子辐照可精确调控磁性薄膜或晶圆的磁学性质。☛ 可提供能量范围:1-30 keV的He+离子束☛ 采用创新的电子回旋共振(ECR)离子源☛ 可对25 mm的试样进行快速的均匀辐照(几分钟)☛ 超紧凑的设计,节省实验空间☛ 可与现有的超高真空设备互联离子辐照磁性精细调控系统Helium-S® 测试数据:调控界面各向异性性质和DMI 低电流诱发的SOT转换获取 控制斯格明子和磁畴壁的动态变化 用户单位 已经购买该设备的国内外用户单位:Beihang University (China)Fudan University (China)University of California San Diego (USA)University of California Davis (USA)New York University (USA)Georgetown University (USA)Northwestern University (USA)University of Lorraine (France)SPINTEC Grenoble (France)University of Cambridge (UK)University of Manchester (UK)Nanyang Technological University (Singapore)A*STAR (Singapore)University of Gothenburg (Sweden)Western Digital (USA)IBM (USA)Singulus Technologies (Germany) 文章列表:[1]. Tailoring magnetism by light-ion irradiation, J Fassbender, D Ravelosona, Y Samson, Journal of Physics D: Applied Physics 37 (2004)[2]. Ordering intermetallic alloys by ion irradiation: A way to tailor magnetic media, H Bernas & D Ravelosona, Physical review letters 91, 077203 (2003)[3]. Influence of ion irradiation on switching field and switching field distribution in arrays of Co/Pd-based bit pattern media, T Hauet & D Ravelosona, Applied Physics Letters 98, 172506 (2011)[4]. Ferromagnetic resonance study of Co/Pd/Co/Ni multilayers with perpendicular anisotropy irradiated with helium ions, J-M.Beaujour & A.D. Kent & D.Ravelosona &E.Fullerton, Journal of Applied Physics 109, 033917 (2011)[5]. Irradiation-induced tailoring of the magnetism of CoFeB/MgO ultrathin films, T Devolder & D Ravelosona, Journal of Applied Physics 113, 203912 (2013)[6]. Controlling magnetic domain wall motion in the creep regime in He-irradiated CoFeB/MgO films with perpendicular anisotropy, L.Herrera Diez & D.Ravelosona, Applied Physics Letter 107, 032401 (2015)[7]. Measuring the Magnetic Moment Density in Patterned Ultrathin Ferromagnets with Submicrometer Resolution, T.Hingant & D.Ravelosona & V.Jacques, Physical Review Applied 4, 014003 (2015)[8]. Suppression of all-optical switching in He+ irradiated Co/Pt multilayers: influence of the domain-wall energy, M El Hadri & S Mangin & D Ravelosona, J. Phys. D: Appl. Phys. 51, 215004 (2018)[9]. Tuning the magnetodynamic properties of all-perpendicular spin valves using He+ irradiation, Sheng Jiang & D.Ravelosona & J.Akerman, AIP Advances 8, 065309 (2018)[10]. Enhancement of the Dzyaloshinskii-Moriya Interaction and domain wall velocity through interface intermixing in Ta/CoFeB/MgO, L Herrera Diez & D Ravelosona, Physical Review B 99, 054431 (2019)[11]. Enhancing domain wall velocity through interface intermixing in W-CoFeB-MgO films with perpendicular anisotropy, X Zhao & W.Zhao & D Ravelosona, Applied Physics Letter 115, 122404 (2019)[12]. Controlling magnetism by interface engineering, L Herrera Diez & D Ravelosona, Book Magnetic Nano- and Microwires 2nd Edition, Elsevier (2020)[13]. Reduced spin torque nano-oscillator linewidth using He+ irradiation, S Jiang & D Ravelosona & J Akerman, Appl. Phys. Lett. 116, 072403 (2020)[14]. Spin–orbit torque driven multi-level switching in He+ irradiated W–CoFeB–MgO Hall bars with perpendicular anisotropy, X.Zhao & M.Klaui & W.Zhao & D.Ravelosona, Appl. Phys. Lett 116, 242401 (2020)[15]. Magnetic field frustration of the metal-insulator transition in V2O3, J.Trastoy & D.Ravelosona & Y.Schuller, Physical Review B 101, 245109 (2020)[16]. Tailoring interfacial effect in multilayers with Dzyaloshinskii–Moriya interaction by helium ion irradiation, A.Sud & D.Ravelosona &M.Cubukcu, Scientific report 11, 23626 (2021)[17]. Ion irradiation and implantation modifications of magneto-ionically induced exchange bias in Gd/NiCoO, Christopher J. Jensen & Dafiné Ravelosona, Kai Liu, Journal of Magnetism and Magnetic Materials 540, 168479 (2021)[18]. Helium Ions Put Magnetic Skyrmions on the Track, R.Juge & D.Ravelosona & O.Boulle, Nano Lett. 2021 Apr 14;21(7):2989-2996参考文献:[1]. Cristina Balan, Johannes W. van de Jagt, et al. Improving Néel Domain Walls Dynamics and Skyrmion Stability Using He Ion Irradiation. Small, 2023. https://doi.org/10.1002/smll.202302039
166人看过
- 2025-04-18 18:00:16热重分析仪坩埚杆怎么安装
- 热重分析仪坩埚杆怎么安装 在使用热重分析仪(TGA)时,坩埚杆的正确安装对实验的性和设备的稳定性至关重要。本文将详细介绍热重分析仪中坩埚杆的安装步骤及注意事项,确保用户在操作时能高效、准确地完成安装过程,从而保证测试数据的可靠性与设备的长寿命。通过以下内容,我们将深入分析坩埚杆安装的重要性,并提供实用的技术指导。 热重分析仪坩埚杆安装步骤 准备工作 在进行坩埚杆安装前,确保所有设备处于关闭状态,并已断开电源。清理安装区域,确保无任何杂物和灰尘,这样可以防止干扰测试结果。 检查坩埚杆及配件 取出热重分析仪的坩埚杆及相关配件,确保它们完好无损,检查坩埚杆是否有裂纹、变形或其他可见损坏。还应检查坩埚的尺寸是否与仪器规格匹配,以避免安装过程中出现不适配的问题。 安装坩埚杆 按照设备说明书中的指示,将坩埚杆小心插入热重分析仪的测量区域。确保杆的接口与仪器的连接部件对接紧密,避免任何松动现象。安装时,应轻拿轻放,避免施加过大的力量,以免造成坩埚杆的损伤或仪器部件的损坏。 固定坩埚杆 确保坩埚杆安装到位后,利用固定装置将其稳固在仪器中。检查连接是否牢固,确保坩埚杆在测试过程中不会因震动或其他外部因素而移位。 调节仪器 安装完成后,启动热重分析仪并进行调试,确认仪器的各项功能正常运作。可以通过空载测试或校准过程来确保设备处于佳工作状态,验证坩埚杆是否安装正确。 安装坩埚杆的注意事项 对接位置准确 坩埚杆的安装必须确保与热重分析仪的对接位置准确。错误的安装位置可能会影响测试结果,导致数据不准确。 避免过度紧固 在固定坩埚杆时,避免过度紧固,以免造成设备接口的损坏或坩埚杆的变形。 定期检查 定期检查坩埚杆的状况,包括是否有磨损、腐蚀等问题,确保长期使用中的安全性与可靠性。 结语 坩埚杆的正确安装不仅关乎热重分析仪的正常运作,也直接影响实验数据的度和仪器的长期使用寿命。通过遵循上述步骤和注意事项,用户可以确保坩埚杆的安装精确无误,大程度地提高测试的有效性和稳定性。
116人看过
- 2025-04-16 16:30:19弹簧疲劳试验机丝杆怎么拆
- 弹簧疲劳试验机丝杆怎么拆 在进行弹簧疲劳试验机的维护与保养时,丝杆的拆卸是一个常见的操作过程。正确拆卸丝杆不仅能够确保试验机的正常运行,还能够延长设备的使用寿命。很多操作人员对丝杆的拆卸方法并不十分熟悉,可能会因不当操作导致设备损坏,甚至影响试验结果的准确性。本文将详细介绍如何安全、高效地拆卸弹簧疲劳试验机中的丝杆,确保操作人员能够熟练掌握这一技能,保障设备的稳定性和测试精度。 弹簧疲劳试验机丝杆的结构与功能 在了解如何拆卸丝杆之前,首先需要对弹簧疲劳试验机的丝杆进行基本了解。丝杆作为试验机的核心部件之一,主要用于驱动测试平台进行精确的运动控制。通过旋转和转动,丝杆能够提供稳定的力学支持,从而确保弹簧试验过程中的负载变化平稳而准确。 拆卸弹簧疲劳试验机丝杆的准备工作 拆卸丝杆前,首先需要对试验机进行断电处理,确保设备在拆卸过程中不会发生任何意外。操作人员需要穿戴适当的防护设备,如手套和护目镜,以防止因操作不当而造成伤害或设备损坏。应检查并清理丝杆及周围环境,移除可能影响拆卸过程的任何杂物或工具。 拆卸丝杆的步骤 断开电源:首先确认试验机处于断电状态,防止电气系统产生不必要的危险。 拆卸外部保护装置:大多数弹簧疲劳试验机会配备保护装置,防止丝杆受到损坏。首先拆卸这些外部装置,为后续的拆卸操作做好准备。 检查连接部件:检查丝杆与电动机、传动系统的连接部件,确认螺栓、螺母等是否松动。使用适当的工具,逐一拆卸这些连接部件。 拆卸丝杆:使用扳手或其他专用工具,轻轻旋转并拆卸丝杆。需要注意的是,在拆卸过程中,尽量避免用力过猛,以免损伤丝杆本身或相关连接部件。 检查丝杆状态:在丝杆拆卸后,务必检查丝杆的工作状态,查看是否有磨损或损坏的迹象。如果发现问题,应及时进行更换或维修。 注意事项 拆卸丝杆时需要特别小心,确保所有拆卸步骤有序进行。如果操作不当,可能会导致试验机损坏或后续重新组装困难。拆卸过程中要保证丝杆及其他部件的干净,避免杂质进入设备内部,影响设备的长期使用。 结论 拆卸弹簧疲劳试验机的丝杆是一项需要精确和细致的操作,稍有不慎可能会导致设备故障或试验数据失真。通过遵循上述步骤和注意事项,可以确保丝杆的拆卸顺利进行,同时避免不必要的风险和损失。掌握正确的操作方法,对设备的维护保养和长期稳定运行至关重要。
92人看过
- 2024-05-31 09:41:57川一 全自动微量分液仪 CYFY-8 多样品定量分液仪 8通道96孔分液仪 OEM长期合作
163人看过

