2025-01-10 10:49:44多光谱校准板
多光谱校准板是一种用于校准多光谱成像系统的标准工具。它具备多个已知反射率或透射率的光谱区域,用于调整和优化成像系统的光谱性能。多光谱校准板具有高精度、高稳定性和易于使用等特点,广泛应用于遥感探测、医学影像、科研实验等领域。通过使用多光谱校准板,可以确保成像系统能够准确获取和解析目标的光谱信息,从而提高数据的准确性和可靠性。

资源:12201个    浏览:69展开

多光谱校准板相关内容

产品名称

所在地

价格

供应商

咨询

多光谱相机5CCD
国外 欧洲
面议
北京先锋泰坦科技有限公司

售全国

我要询价 联系方式
FluorCam多光谱荧光成像系统
国外 欧洲
面议
北京易科泰生态技术有限公司

售全国

我要询价 联系方式
多光谱相机
国外 欧洲
面议
北京先锋泰坦科技有限公司

售全国

我要询价 联系方式
多光谱相机(高性价比)
国外 欧洲
面议
上海昊量光电设备有限公司

售全国

我要询价 联系方式
多光谱相机-2CCD系列
国外 欧洲
面议
凌云光技术股份有限公司

售全国

我要询价 联系方式
2025-02-17 14:30:16多光谱光声断层扫描成像原理是什么?
多光谱光声断层扫描成像:开创医学影像的新篇章 多光谱光声断层扫描成像(MSPAT)是一项革命性的成像技术,结合了光学和超声波的优势,能够提供高分辨率的图像,且具有较高的深度穿透能力。随着技术的不断发展,MSPAT在医学成像、癌症检测、脑部研究等领域展现了广泛的应用潜力。本篇文章将深入探讨多光谱光声断层扫描成像的原理、优势及其在临床诊断中的应用。 光声效应与成像原理 多光谱光声断层扫描成像的核心原理是基于光声效应。当激光光源照射到组织中时,组织中的水分和血红蛋白会吸收特定波长的光,导致局部温度升高并产生快速的热膨胀。这个过程会激发声波的产生,声波的强度和频率可以通过超声探头进行探测,从而反映出组织的内部结构和成分。 多光谱光声断层扫描成像之所以能称为“多光谱”,是因为它使用了不同波长的激光源,从而可以获得组织的不同光学特性。这种技术的优势在于,它能够获取更丰富的组织信息,识别不同的组织成分,如血管、肿瘤以及其他病变区域。 多光谱光声断层扫描成像的优势 相比传统的成像技术,如CT(计算机断层扫描)和MRI(磁共振成像),多光谱光声断层扫描成像具有独特的优势。MSPAT能够以较高的分辨率提供结构性图像,这在微小病变的早期发现上至关重要。尤其是在肿瘤检测方面,MSPAT能有效区分肿瘤组织和健康组织,有助于提高肿瘤早期筛查的准确性。 MSPAT能够在不使用放射线的情况下,获得丰富的血管信息。传统的成像技术需要注射对比剂来突出血管的显现,而MSPAT则通过不同波长的激光照射,可以无创性地提供关于血管的详细信息,且能够深入体内组织层次,帮助医生更好地评估肿瘤的血供状况或病变的演变过程。 临床应用前景 在医学领域,MSPAT已经展现出巨大的应用潜力,尤其在肿瘤检测和神经系统疾病的诊断中。通过对肿瘤组织的精确成像,医生可以更加准确地评估肿瘤的大小、位置以及血供情况,从而为方案的制定提供重要依据。MSPAT也在脑血管病变、脑部肿瘤等神经系统疾病的研究中,帮助医生获取更加直观的病变图像,辅助早期诊断和治果评估。 未来,随着技术的不断进步,MSPAT的应用范围将进一步扩展。尤其是与人工智能结合的进展,MSPAT的图像分析将更加,能够帮助医生在极短的时间内做出更加科学的诊断决策,极大地提高医率和诊断准确率。 结论 多光谱光声断层扫描成像作为一项创新的成像技术,凭借其高分辨率、无创性和多波长成像的优势,正在医学影像领域中占据越来越重要的地位。随着技术的不断发展,MSPAT将在肿瘤筛查、脑部疾病诊断等方面展现出更加广泛的应用潜力,并有望成为未来医学影像的主流技术之一。
265人看过
2023-05-26 10:20:02FluorCam-Pro植物多光谱荧光成像系统
FluorCam-Pro植物多光谱荧光成像系统是FluorCam叶绿素荧光成像技术的最 新高级扩展产品。此系统既可用于PAM脉冲调制式叶绿素荧光动态成像分析,又可用于UV紫外光对植物叶片激发产生的多光谱荧光成像测量分析,还可选配滤波器组对GFP、RFP、YFP、SYBR Green等荧光蛋白和荧光染料进行稳态荧光成像测量。测量对象包括叶片、果实、花朵、整株拟南芥或其他小型植株、苔藓、微藻、大型藻类乃至特定的动物样品。应用领域:植物光合生理生态植物逆境胁迫生理与易感性植物初级代谢与次级代谢植物表型组学成像分析(Phenotyping)作物遗传育种与抗性筛选种子萌发与活力监测转基因植株筛选功能特点:多激发光-多光谱荧光成像技术:通过两种以上不同波长的光源激发植物样品中不同的发色团发出荧光并进行成像检测,即为多激发光多光谱荧光成像技术。植物的多光谱荧光主要包括叶绿素荧光、UV紫外光激发多光谱荧光和荧光蛋白荧光FluorCam-Pro无需更换任何配件即可同步实现多激发光-多光谱荧光成像功能:PAM脉冲调制式叶绿素荧光成像紫外激发F440、F520、F690、F740多光谱荧光成像GFP、RFP、YFP等常用荧光蛋白成像可根据用户需要定制荧光蛋白或荧光染料成像,如BFP、CFP、SYBR Green、DAPI等可对黄酮、花青素含量进行定量测量可进行自动重复成像测量和无人值守监测,可设置实验程序(Protocols)自动循环成像测量,成像测量数据自动按时间日期存入计算机(带时间戳)测量样品为各种活体植物样品,包括叶片、花卉、果实、整株拟南芥或其他小型植物、微藻(包括液滴、多孔板、固体培养基)及大型藻类等技术指标:一体式设计,自带暗适应箱体最 佳成像面积:20×20cm测量参数:Fo, Fo’, Fs, Fm, Fm’, Fp, FtDn, FtLn, Fv, Fv'/ Fm', Fv/ Fm ,Fv',Ft,ΦPSII, NPQ_Dn, NPQ_Ln, Qp_Dn, Qp_Ln, qN, qL, QY, QY_Ln, Rfd, ETR等50多个叶绿素荧光参数;紫外激发多光谱荧光成像参数:F440、F520、F690、F740;荧光蛋白荧光强度参数Ft;每项参数均可显示对应二维荧光彩色图像。并可测量计算黄酮醇指数Flavonol Index,、花青素指数Anthocyanin Index。具备完备的自动测量程序(protocol),可自由对自动测量程序进行编辑1)Fv/Fm:测量参数包括Fo,Fm,Fv,QY等叶绿素荧光参数2)Kautsky诱导效应:Fo,Fp,Fv,Ft_Lss,QY,Rfd等叶绿素荧光参数3)Quenching荧光淬灭分析:Fo,Fm,Fp,Fs,Fv,QY,ΦII,NPQ,Qp,Rfd,qL等50多个叶绿素荧光参数4)Light Curve光响应曲线:不同光强梯度条件下Fo,Fm,QY,QY_Ln,ETR等叶绿素荧光参数5)MultiColor紫外激发多光谱荧光成像(选配)6)FPs荧光蛋白成像:GFP、YFP、RFP、BFP等(选配)荧光激发光源组:全LED光源,包括620nm红光、5700K冷白光、735nm远红光、365nm紫外光,445nm品蓝光,470nm蓝光,505nm青光,530nm绿光,590nm琥珀色光等高分辨率CCD相机1)图像分辨率:1360×1024像素2)时间分辨率:在最 高图像分辨率下可达每秒20帧具备7位滤波轮,标配叶绿素荧光滤波器,根据用户需要可定制紫外激发多光谱荧光和GFP、RFP、YFP、BFP等荧光蛋白专用滤波器FluorCam叶绿素荧光成像分析软件功能:具Live(实况测试)、Protocols(实验程序选择定制)、Pre–processing(成像预处理)、Result(成像分析结果)等功能菜单自动测量分析功能:可设置一个实验程序(Protocol)自动无人值守循环成像测量,重复次数及间隔时间客户自定义,成像测量数据自动按时间日期存入计算机(带时间戳)成像预处理:程序软件可自动识别多个植物样品或多个区域,也可手动选择区域(Region of interest,ROI)。手动选区的形状可以是方形、圆形、任意多边形或扇形。软件可自动测量分析每个样品和选定区域的荧光动力学曲线及相应参数,样品或区域数量不受限制(>1000)输出结果:高时间解析度荧光动态图、荧光动态变化视频、荧光参数Excel文件、直方图、不同参数成像图、不同ROI的荧光参数列表等应用案例:1.抗病毒基因研究:叶绿素荧光成像与GFP成像联合分析法国国家农业科学研究院一直致力于马铃薯y病毒组的抗病基因研究,通过不同基因编辑处理方法,验证抗病毒分子机制。相关研究中,研究人员利用FluorCam多光谱荧光成像系统的GFP荧光蛋白成像功能,定量分析感染面积与病毒积累量,从而直观地反映了不同基因功能对拟南芥病毒抗性的影响。同时,叶绿素荧光成像则反映病毒对光合系统的损伤,同步提供植物的光合表型信息。参考文献:Zafirov D, et al. 2021. When a knockout is an Achilles' heel: Resistance to one potyvirus species triggers hypersusceptibility to another one in Arabidopsis thaliana. Mol Plant Pathol. 22: 334–347Bastet A, et al. 2019. Mimicking natural polymorphism in eIF4E by CRISPR‐Cas9 base editing is associated with resistance to potyviruses. Plant Biotechnology Journal 17: 1736–1750Bastet A, et al. 2018. Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants. Plant Biotechnology Journal: 1–132.不同颜色凌霄叶片的叶绿素荧光与紫外激发多光谱荧光成像分析(易科泰EcoTech®实验室)产地:欧洲
675人看过
2025-09-28 17:15:21位置传感器如何校准
位置传感器是现代自动化、工业和机器人领域中不可或缺的组成部分,它们用于精确测量物体或系统的位置变化。位置传感器的性能不仅仅取决于其硬件设计,还高度依赖于精确的校准过程。本文将详细探讨位置传感器校准的必要性、常见方法以及如何有效实施校准流程,以确保设备的长期稳定性与精确度。 位置传感器的基本概念 位置传感器通过测量物体的位置、角度或距离的变化,将这些物理信息转化为电信号输出。常见的类型包括光电传感器、电感传感器、电容传感器以及超声波传感器等。这些传感器广泛应用于工业自动化、机器人控制系统、自动驾驶汽车、以及精密测量仪器等领域。它们的度直接影响到整个系统的性能,因此校准过程显得尤为重要。 校准的重要性 位置传感器在长期使用过程中可能会出现一些偏差,这些偏差可能由多种因素引起,如温度变化、外部干扰、磨损或安装误差等。未经过校准的传感器可能导致数据不准确,从而影响到系统的运行效率,甚至可能导致设备故障。因此,定期对位置传感器进行校准,能够大限度地消除这些误差,确保系统能够按照预期的精度运行。 校准方法 物理标定法 物理标定是直接且常用的校准方法,主要通过将传感器与已知标准位置进行比对,来验证和调整传感器的输出值。该方法通常适用于线性位置传感器。在物理标定过程中,使用高精度的测量设备,如激光测距仪或标准量块,来确定传感器读数是否与实际位置一致。如果传感器的输出值存在误差,可以通过调节传感器内部的设置或进行硬件调整来修正。 软件校准 软件校准主要是通过调整传感器的输出与已知标准进行匹配,通常适用于数字化位置传感器。软件校准通常会涉及到编程、数据拟合和补偿算法等,通过对传感器的输出信号进行数学模型处理,消除系统误差。常见的算法包括小二乘法、多项式拟合等,这些算法能够在一定程度上提高校准精度,特别是在复杂或非线性应用中。 自校准功能 一些高端的现代传感器配备了自校准功能,能够在一定范围内自动调整其输出,保持精度。自校准功能通常基于传感器自身的反馈机制,能够在使用过程中监控位置传感器的表现并进行微调。虽然这种方法方便且高效,但仍需要定期进行人工检查,以确保传感器的稳定性。 环境校准 环境因素如温度、湿度和电磁干扰可能会影响位置传感器的性能。因此,在一些特定应用中,还需要考虑环境因素的影响。环境校准可以通过模拟不同的操作条件来验证传感器在不同环境下的表现,从而为后续的操作提供参考。 校准频率与维护 位置传感器的校准不是一次性任务,而是一个持续的过程。传感器的使用环境和应用场景会影响校准的频率。例如,常常处于高温或震动环境下的传感器可能需要更频繁的校准,而那些处于稳定环境中的传感器则可以适当延长校准周期。 一般来说,推荐每6个月或每年进行一次全面的校准检查,特别是在高精度要求的应用中。如果传感器在运行过程中出现异常波动或数据异常,也应立即进行校准或检查。 校准流程优化 为确保位置传感器的长期稳定性,制定一套系统化的校准流程至关重要。应该选择合适的校准设备和工具,并在校准前进行全面的设备检查。要根据传感器的类型和应用场景选择合适的校准方法。校准过程应由专业人员进行,确保校准结果的可靠性与准确性。 随着科技的进步,一些智能化、自动化的校准设备也开始投入使用,这些设备能够大大提高校准效率并减少人为误差。借助这些新技术,传感器的校准过程将变得更加、便捷。 结语 位置传感器的校准工作是保障其精确度与长期稳定性的核心环节。无论是物理标定法、软件校准,还是环境校准,均有其独特的应用场景和方法。在实际操作中,合理的校准周期与科学的校准方法相结合,才能大程度地提升传感器的性能,确保系统的高效运行。因此,重视位置传感器的校准工作,定期进行校准检查,是确保设备可靠性和高效性的基础。
85人看过
2025-09-28 17:00:23温度记录仪如何校准
在生产、仓储、运输、实验检测等领域中,温度记录仪是确保温度数据准确性的重要工具。无论是在冷链物流中保证食品安全,还是在精密实验中控制环境参数,温度记录仪的校准都是维持设备可靠性的关键环节。本文将围绕温度记录仪的校准方法、步骤及注意事项进行系统剖析,为设备管理和质量控制提供可落地的技术参考。 一、校准的意义与必要性 温度记录仪通过内置传感器测量环境温度并将数据储存,供后续分析使用。传感器本身会因长期运行、环境影响或元器件老化而产生微小误差。如果未及时校准,这些偏差可能逐渐累计,导致记录数据与真实温度产生明显差距。对生产环节而言,这不仅影响工艺控制,还可能引发质量事故;在医疗或冷链运输中,更可能直接影响产品安全。因此,定期校准是设备管理的重要制度之一。 二、校准的准备工作 在进行校准前,应做好以下准备: 确认校准标准:选择符合国家或行业标准的温度标准源,如精密恒温槽或温度校准炉。 检查设备状态:确保温度记录仪无外观损伤、电池电量充足、传感器表面清洁无污物。 环境条件控制:选择无强烈气流干扰、温度稳定的环境进行校准,避免环境波动影响结果。 工具配备:包括精密标准温度计、数据线、校准软件等,确保校准过程顺畅。 三、校准方法与步骤 根据设备类型和精度要求,常用的校准方法有以下几种: 比较法校准 将温度记录仪传感器与标准温度计放置在同一温度环境中,同时记录两者读数,计算差值并在设备软件中进行补正。 多点校准法 在不同温度点(如0℃、25℃、50℃)进行数据采集,建立温度-差值曲线,按曲线修正仪器读取。此方法适用于需要在宽温范围内使用的设备。 现场快速校准 对部分无法送检的设备,可使用便携式温度校准器在现场完成调试,虽精度略低,但可确保短期数据可靠性。 四、校准周期与数据记录 校准周期应结合设备使用频率与应用场景确定。实验室精密设备可每三个月校准一次,冷链运输设备一般半年至一年一次。校准完成后应保存校准记录,包括日期、方法、标准源信息、修正值等,以便后续追溯和质量审计。 五、校准过程中的注意事项 标准温度源务必经过官方计量机构验证,以确保基准值的权威性。 传感器探头切勿接触腐蚀性物质或高湿环境,以免影响性能。 进行多点校准时,必须等温度稳定后再读取数据,减少瞬时波动误差。 校准结束后应重新测试设备在实际使用环境中的表现,确保补正值有效。 六、专业结语 温度记录仪的校准不仅是技术操作,更是质量管理体系中的一环。从选择合格的标准温度源,到科学设定校准周期,每一步都直接影响数据的可信度与设备的稳定性。在各类生产与检测环节中,能否提供可靠的温度数据,决定了产品质量与安全的保障水平。只有以严谨的态度、专业的流程执行校准,才能使温度记录仪真正发挥其在现代工业与科学研究中的核心价值。
115人看过
2025-09-28 17:00:22涡旋混合器如何校准
在实验室中,涡旋混合器是一种常用的样品混合设备,通过高速旋转产生的涡流将液体或粉末迅速均匀混合。长期使用后,设备的转速精确度、振动幅度及工作稳定性会出现偏差,影响混合效果甚至造成实验误差。正确高效的校准不仅能确保涡旋混合器的性能稳定,还能够延长其使用寿命,并保障实验数据的可靠性。本文将围绕涡旋混合器的校准方法、所需工具、注意细节以及验证步骤进行深入说明,帮助技术人员在实际操作中快速掌握精确的校准流程。 一、校准前的准备工作 在开始校准前,需要对设备进行全面检查。首先确认涡旋混合器外壳、旋钮、固定底座是否完好,无裂纹或松动;检查电源线与插头接触是否良好,避免接触不稳引起转速波动。校准前应清理仪器表面及工作平台,防止灰尘或其他颗粒干扰检测精度。确保周围环境温湿度适宜,一般建议温度在20±5℃,湿度不超过60%,以减小环境因素对设备性能的影响。 二、校准所需工具 涡旋混合器的校准,不仅需要专业的测量仪表,还需要辅助工具。常用的设备包括: 数字转速表:用于精准测定混合器的实际转速,以核对控制面板设定值与实测值的差异。 秒表或定时软件:测量启动响应时间和定时功能的准确度。 标准样品瓶或试管:确保测试过程中负载一致,避免因容器不匹配而引入误差。 精密水平仪:确保设备摆放平衡,防止倾斜影响涡流中心位置。 橡胶缓冲垫:消除外部震动对测试的干扰。 三、校准步骤详解 转速校准 将标准试管固定在涡旋盘上,使用数字转速表测量其转速。记录不同档位下的实际转速值,与设备设定值比对。如果差值超过允许范围(通常±2%),需要调整内部电路中的速度控制电位器,直至数据与设定相符。 振幅与同心度调整 启动混合器,观察试管顶端轨迹是否存在偏心或不稳定现象。若出现明显偏差,应检查涡旋盘固定螺丝是否松动,并重新定位盘面中心位置。振幅过大或过小也会影响混合均匀度,可通过微调偏心轮位置进行修正。 定时功能验证 设置不同的工作时长,使用秒表记录实际工作时间。如果误差超过规定的公差范围,需要检查定时模块或更换内部微控芯片。 负载稳定性测试 向设备加载大允许重量的试管组,在不同速度档位运行数分钟,观察是否出现过热、异常噪音或速度下降。如有异常,应检查电机与驱动轴的磨损状况,并及时更换损耗部件。 四、注意事项与维护建议 校准过程中应逐项记录测试结果,以便对比历次校准数据,分析设备的性能趋势。 若设备内部结构较复杂,建议由有资质的技术人员操作,以避免不当拆装造成故障。 校准完成后,需在设备外壳贴上校准日期与技术员签名,作为质量追溯依据。 定期维护可延缓性能衰减,例如每三个月对关键传动部件进行润滑,每次使用后清洁涡旋盘表面。 五、校准后的检验与确认 完成上述校准工作后,应进行一次综合运行测试,模拟实验室常规应用场景,确保设备在连续工作状态下各项参数稳定。若运行中各档位转速、振幅与设定一致,噪音低且无异常振动,即说明校准合格,可以投入正常使用。 通过科学的校准流程,涡旋混合器的性能可保持在佳状态,确保实验结果的精度与可重复性。这不仅是维护设备质量的重要环节,也是实验数据可靠性的技术保障。
72人看过
切片展片仪
自动重量稀释仪
20目筛网孔径是多少
迷你型超声波破碎仪品牌
美标转筒烘干机
环氧玻璃鳞片hlp-10
半导体激光芯片测试机
电解抛光腐蚀仪
COS封装
通用电容测量仪DF2615E
步入式恒温恒湿箱
二甲基苯酚
青岛明华电子仪器有限公司
QATM振动抛光机
hw-v9000一体机 价格
日本 程序降温仪
水质硫化物酸化吹气仪
水质在线硬度仪
雷达液位计型号
美国皮带秤
超高分辨蛋白质谱联用仪
全自动PH测定仪
德国皮带秤
电子天平 去皮范围
全自动均质机
硫化物吹气仪
超声波扫描显微镜
显微高光谱
大鼠IVC系统
杜马斯
岛津自动进样器针座垫片
便携式傅里叶
手动固相微萃取
QuantStudio 5
电参数测量仪
全自动平行氮吹仪