2025-01-10 10:52:50近红外光学脑成像
近红外光学脑成像是一种无创的脑功能成像技术。它利用近红外光对大脑进行照射,通过检测大脑组织对光的吸收和散射变化,反映大脑中的血液动力学变化,从而间接推断大脑神经活动的情况。该技术具有时间分辨率高、空间分辨率适中、对被试无创伤、易于操作等优点,广泛应用于神经科学、心理学、认知科学等领域的研究中。

资源:11435个    浏览:13展开

近红外光学脑成像相关内容

产品名称

所在地

价格

供应商

咨询

便携式近红外脑成像系统OctaMon
国外 欧洲
面议
赢富仪器科技(上海)有限公司

售全国

我要询价 联系方式
Specim FX17近红外高光谱成像相机
国外 欧洲
面议
北京易科泰生态技术有限公司

售全国

我要询价 联系方式
Specim FX10可见光近红外高光谱成像相机
国外 欧洲
面议
北京易科泰生态技术有限公司

售全国

我要询价 联系方式
美国海洋光学 近红外-flame-NIR光谱仪
国外 美洲
面议
海洋光学

售全国

我要询价 联系方式
便携式近红外脑成像系统BabyBrite
国外 欧洲
面议
赢富仪器科技(上海)有限公司

售全国

我要询价 联系方式
2023-06-08 15:07:08览聚氨酯前世今生,看近红外大显身手
1937年,德国化学家奥托·拜耳博士发明了我们称之为聚氨酯的多功能塑料。聚氨酯是通过多元醇与异氰酸酯反应生成的,必要时还可使用适当的催化剂和添加剂。由于多种异氰酸酯和多种多元醇均可用于生产聚氨酯,因此可以生产出多种形式的聚氨酯材料来满足不同应用的特定要求,如:硬质泡沫、软质泡沫、弹性体、胶粘剂、涂料、密封胶。目前,聚氨酯制品已广泛应用于家居、建筑、日用品、交通、家电等领域。在不同类型的聚氨酯生产过程中,均需要通过检测某些参数来保证成品质量,如:多元醇的羟值、酸值、颜色、水分含量,异氰酸酯的NCO 含量、水分含量,聚氨酯的 NCO 含量、水分含量、酸值。使用传统分析技术测定上述参数是一个漫长且具有挑战性的过程,因为测定这些参数需要使用多种不同的分析技术,不仅需要消耗大量的时间来分析样品,还需要花费时间进行仪器管理和维护。毫无疑问,在生产过程中进行更加严格的质量保证和质量控制是一种必然趋势,这种趋势同时还伴随着对低成本、高效率分析方法的更加关注。近红外光谱作为聚氨酯行业公认的快速可靠的质量控制方法,一分钟内即可同时测定多个参数,且无需样品前处理或使用任何化学品,即使是非专业人员,也可轻松操作。瑞士万通在聚氨酯分析方面拥有丰富的专业知识,并为此提供了解决方案——DS2500 近红外光谱分析仪(固/液两种版本),可用于快速测定多元醇、异氰酸酯和聚氨酯的多个质量参数。对于多元醇的羟值和异氰酸酯的 NCO 含量测定,瑞士万通还可提供现成的预校准模型,开箱即用,免去了从零开发模型的困难,让您从开机第 一天就充分发挥生产力。瑞士万通 DS2500 近红外光谱分析仪可为聚氨酯生产过程中的各个阶段保驾护航,不仅省时省力,而且绿色环保,更可为您节省高达90%的运行成本。以多元醇的羟值测定为例,比较传统分析方法(滴定)和近红外光谱法的运行成本:对质量控制过程的低估是导致内外部产品不合格的主要因素之一,据报道,这会导致10-30%的营业额损失。由于传统分析方法存在的诸多弊端,越来越多的企业开始选择在其质量控制过程中使用近红外光谱作为一种快速高效的替代方法。
137人看过
2022-05-07 14:00:52近红外二区小动物活体成像应用 | 研发X光激发的NIR-II余辉发光材料
背景介绍传统的荧光(Fluorescence)组织成像,是将成像组织置放于不断发射特定波长的光源照射下进行。受同一个光源照射影响,周围的组织自体同样会产生荧光,称为背景荧光。背景荧光的存在将使得信噪比下降,不利于对目标组织进行成像。因而近几年,科研工作者开始寻求一种新的发光成像——余辉发光(Persistent luminescence)。余辉发光是物体在照射光源并撤去光源后,持续发光的现象。因为发光时不再接受光源照射,因而在应用于组织成像时,能够减少自体荧光背景的影响,提高信噪比(图1)。 图1 荧光和余辉发光的原理对比图(蓝色箭头为激发光;绿色箭头为散射光;红色箭头为发射光;褐色箭头为背景荧光。强度可参考箭头粗细)  尽管余辉发光有如此明显的优势,目前涉及的材料仍有以下几个问题:1、材料主要为大型晶体,涉及高温的合成环境并缺乏纳米结构和表面性质上的可调性;2、材料成像多为可见光和NIR-I,成像深度有限;3、激发材料发光的波长多为可见光或紫外,能量低,不利于材料能量富集;4、一些可富集高能量的由X光激发的材料所发射的波长在可见光和NIR-I范围内,成像深度同样有限。 材料研发 针对以上问题,Peng Pei等人通过在NaGdF4、NaGdF4纳米粒子中加入镧系元素掺杂剂,成功合成出了X光激活的余辉发光纳米粒子(Persistent luminescence nanoparticles,PLNPs)。通过调整加入的元素种类,使得PLNPs具有可调谐性,且均在NIR-II波段内(图2)。图2 通过掺入不同的稀土元素(Er、Tm、Ho、Nd)调整纳米粒子在NIR-II波长段的发射波长 材料优化 文章中涉及的主体材料有NaYF4、NaGdF4 两种,因而可优化的方向较多。作者首先将作为主体的NaGdF4、NaGdF4 同时应用于一个纳米粒子中,形成壳核结构。之后对纳米粒子的掺杂剂浓度、核体积、壳厚度、结晶相(Crystalline phase)、主体基质(Host matrix)等性质进行的考察。其中对于主体基质,作者发现壳核使用同一种主体材料(NaYF4或NaGdF4)将获得更高的纳米粒子发光强度。这可能是由于同一种主体材料原子大小相同,使得晶体的缺陷(Defect)更少。 体内成像 优化后的Er-PLNPs进行了小鼠的腹部血管成像和输尿管成像测试。在腹部血管成像测试中,相对于荧光成像,余辉发光成像获得了更高的肿瘤/正常组织亮度比(T/N ratio),尤其在注射后的5 min时,可达到荧光成像信噪比的3.7倍。而在输尿管成像测试中,作者在小鼠肾盂部位注射后,肾盂、输尿管和膀胱都能够在NIR-II成像中观察到,其T/N比相对于荧光成像达到了4.1倍。 图3 余辉发光纳米粒子(上)与荧光纳米粒子(下)分别在注射后 5、10、20 min 得到的NIR-II成像  图4 余辉发光纳米粒子(红)与荧光纳米粒子(蓝)注射后的肿瘤与正常组织信号强度比(T/N ratio) 小结 凭借可调谐的NIR-II成像波长、高信噪比、高分辨率、低细胞毒性等特点,Peng Pei等人的成果大大拓展了现有X光激发的余辉发光材料的种类和应用场景。但同时,发光效率仍有待提高,降低用于激发的X光剂量使其达到安全门槛也是今后拓展研究的重要方向。 参考文献[1] Pei, P., Chen, Y., Sun, C. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 16, 1011–1018 (2021).   锘海 SWIR 1.0 近红外二区活体荧光成像系统采用低噪声和高灵敏度的进口InGaAs 红外探测器,结合动物气体麻醉装置及便捷的操作界面,实现实时荧光信号成像。通过镜头切换,可分别完成宽场和局部放大成像,具有非常高的荧光信号采集能力。高帧频不仅可以实现单幅图片采集,更可以完成视频拍摄,帮助您捕获整个实验过程。 锘海-近红外二区小动物活体成像系统 往期推荐:● 近红外二区小动物活体成像——高信噪比双成分造影剂协助肿瘤手术成像● 近红外二区小动物活体成像 —— 呼吸速率监控● 近红外二区小动物活体成像 —— 稀土纳米颗粒协助肿瘤切除手术
224人看过
2025-04-02 18:30:14脑功能超声成像设备原理是什么?
脑功能超声成像设备:未来医疗技术的突破 脑功能超声成像设备作为一项前沿医疗技术,正在逐渐改变神经科学和神经医学的诊断方式。这项技术结合了超声成像技术和脑功能监测功能,提供了一种非侵入性的方式来实时观察和评估大脑活动。本文将深入探讨脑功能超声成像设备的工作原理、应用领域以及它在医疗诊断中的重要性,展示这一创新技术如何在改善病人治果和提升医学研究水平方面发挥着重要作用。 脑功能超声成像设备的工作原理 脑功能超声成像设备通过结合传统的超声波技术和先进的脑功能监测原理,能够实现对大脑血流、氧合及其代谢状态的实时检测。这些设备通过发射高频声波并接收回波,精确描绘大脑血管的结构,同时分析血流变化与神经活动之间的关联。与传统的MRI或CT扫描相比,脑功能超声成像技术具有更高的便捷性和较低的成本,并且能够实时显示大脑活动的变化,帮助医生进行更加的诊断和。 应用领域 脑功能超声成像设备的应用领域非常广泛,尤其在神经疾病的诊断和中发挥着巨大的作用。例如,对于中风患者,超声成像可以用来实时监测大脑的血流变化,帮助医生评估脑部缺血的严重程度,进而决定方案。在神经退行性疾病的诊断中,脑功能超声也能够帮助医生监测脑细胞的功能状态,早期发现认知功能下降的迹象,为疾病的早期干预提供有力支持。 脑功能超声成像设备还广泛应用于脑瘤的监测与评估。在对脑肿瘤的诊断中,超声成像技术能够帮助医生清晰显示肿瘤所在位置以及血流情况,从而为后续的手术或方案提供重要依据。这项技术还被应用于急性创伤后的神经监测,尤其在重症监护室内,能够实时观察患者的大脑状况,及时采取救治措施,减少并发症发生的风险。 脑功能超声成像设备的优势 相比于传统的脑部检查技术,脑功能超声成像设备具有许多不可比拟的优势。它能够实时获取数据并立即提供结果,这对于需要迅速决策的急诊病例尤其重要。脑功能超声成像设备的使用无需麻醉,并且没有辐射风险,这为患者提供了更安全的检查体验。相较于MRI和CT扫描,脑功能超声成像设备在设备成本和操作维护方面更具经济性,能够为医疗机构提供更为高效且成本可控的解决方案。 未来发展趋势 随着医学技术的不断发展,脑功能超声成像设备有望在未来进一步实现小型化和便捷化,进而进入更广泛的临床应用场景。例如,携带式脑功能超声成像设备将可能成为家庭健康监测的新工具,患者无需到医院就能进行自我检测和监控大脑健康状态。随着人工智能技术的融合,脑功能超声成像设备将在数据分析和诊断精度上获得更大的提升,能够更准确地识别出潜在的健康风险和早期病变。 结语 脑功能超声成像设备在现代医学中正扮演着越来越重要的角色。其非侵入性、实时性以及高效性使其成为神经疾病诊断和中的得力助手。随着技术的不断创新和发展,未来脑功能超声成像设备将为更多患者带来便捷和的诊疗体验,推动医学领域的不断进步与突破。
23人看过
2025-04-17 16:45:16近红外分析仪说明书怎么看?
近红外分析仪说明书 近红外分析仪是现代科学研究和工业生产中广泛应用的一种分析工具。其主要通过分析样品反射或透射的近红外光谱数据来获得物质的成分和性质信息。随着科技的进步,近红外分析仪逐渐成为了品质控制、原料检测、环境监测等领域的核心设备。本文将详细介绍近红外分析仪的工作原理、应用范围、使用方法及维护保养,帮助用户深入了解该设备的使用技巧和注意事项,以便在实际操作中提高分析效率和准确性。 近红外分析仪的工作原理 近红外分析仪基于光谱学原理,通过发射近红外光线照射样品,样品根据其物质的化学组成、结构等特性对不同波长的光线产生不同的吸收和散射反应。近红外光的波长通常介于780nm至2500nm之间,这一波段的光谱能够穿透大部分非金属物质并对其分子振动模式产生影响。仪器通过测量样品对不同波长光的吸收程度,结合已知的校准数据,可以推算出样品中各成分的浓度或性质。 近红外分析仪的应用范围 近红外分析仪的应用非常广泛,主要体现在食品、医药、化工、环境监测和材料科学等领域。在食品工业中,近红外分析仪常用于检测原料的水分、脂肪、蛋白质含量,从而确保产品的品质和稳定性。在制药行业,近红外分析技术被用于药品的质量控制,尤其在原料药和成品药的检验过程中起到了重要作用。近红外分析仪还在农业、纺织、环保等行业中得到了广泛应用。 近红外分析仪的使用方法 操作近红外分析仪时,首先需要选择合适的样品量,并确保样品表面均匀。样品的放置位置应避免光线干扰,以确保光谱的准确性。在样品准备过程中,注意避免污染物质对分析结果的影响。仪器的校准也非常重要,必须使用标准物质进行校准,以确保分析结果的准确性和可靠性。 近红外分析仪一般配有数据分析软件,用户可以通过软件进行数据的处理和分析。常见的数据处理方法包括谱图去噪、基线校正、主成分分析等,确保从原始数据中提取出有效的分析信息。通过这些步骤,可以实现对样品成分的快速定量分析,并生成详细的报告。 近红外分析仪的维护与保养 为了确保近红外分析仪的长期稳定运行,定期的维护和保养是必不可少的。应定期清洁仪器的光学组件,避免灰尘和污垢对测量精度的影响。定期检查仪器的光源和探测器,确保其性能处于佳状态。用户还应定期进行校准,以避免仪器出现偏差,影响分析结果的准确性。 设备使用完毕后,应关掉电源,并进行适当的存放。长期不使用时,可以定期启动仪器,检查其各项功能是否正常,确保设备处于良好的工作状态。 结语 近红外分析仪凭借其快速、无损、准确的特点,在各行各业中都扮演着至关重要的角色。掌握近红外分析仪的工作原理、应用范围、使用方法及维护技巧,将有助于用户充分发挥设备的性能,提高生产效率和产品质量。对于企业和研究机构而言,定期维护和合理使用近红外分析仪,不仅能够降低设备故障率,还能延长仪器的使用寿命,为日常工作提供强有力的支持。在未来,随着技术的不断进步,近红外分析仪将在更多领域展现出更大的应用潜力。
39人看过
2025-02-01 18:10:13光学金相显微镜型号区别
光学金相显微镜作为金属材料研究和分析中的重要工具,不同型号的光学金相显微镜在性能、配置和适用领域上存在显著差异。在本文中,我们将详细探讨市面上常见的光学金相显微镜型号,分析它们之间的区别,以及如何根据实际需求选择适合的型号。通过对比不同型号的特点和功能,帮助科研人员、工程技术人员及相关领域的从业人员更好地理解每种显微镜的优势与局限,从而做出科学合理的选购决策。 光学金相显微镜主要用于观察金属样品的显微结构,包括晶粒大小、组织形态及缺陷等,通过光学成像技术对样本进行放大分析。不同型号的显微镜在镜头配置、光源选择、放大倍数、图像处理能力等方面有所不同,适应的工作环境和研究需求也有所差异。 基础型光学金相显微镜通常采用普通光源和标准物镜,适合对大多数金属材料进行基本的显微观察。这类显微镜的放大倍率较低,适用于初步的材料研究和常规检测。在一些高精度要求的研究中,如需要分析纳米级别的细节,用户可能需要选择更高端的型号。 中高端型号的光学金相显微镜则配备了高亮度的LED光源或氙灯,能够提供更强的照明效果,帮助研究人员在高倍放大下获得更清晰的图像。这些型号往往还配有图像分析软件,能够对显微图像进行自动化处理、统计分析,提升了操作的便捷性与精度。 对于高精度、特殊研究要求的显微镜,如电子显微镜或扫描电镜,其配件和附件也更为复杂,除了更高的放大倍率,还可能包括更多的光源选择、反射光观察系统以及精密的样品台调节系统。这类显微镜的应用范围主要集中在对金属材料微观结构、晶体缺陷等进行深度分析。 光学金相显微镜的型号选择不仅仅是依据显微镜的外形或价格,还要根据具体的使用需求、样品类型及实验要求来决定。了解各型号之间的差异及其性能特点,能够确保研究和分析过程的高效性与准确性,避免盲目选择和不必要的成本浪费。通过合理的型号选择,科研人员可以大限度地提高实验效果,获得更加精确的分析结果。
38人看过
高压脱气泡
包装密封性检验
车辆齿轮油
光谱亮度计-色域测试仪-
流化金属沙浴器
提拉镀膜机
种马精子分析仪
核酸提取设备
动物异氟烷
流延涂膜刮膜
新生鼠呼吸机
试验室测试台
自动压膜机
动物麻醉呼吸机
自动烘干涂膜机
小鼠异氟烷
小鼠呼吸机
大鼠异氟烷
荧光细胞分析仪
非人灵长类microCT
大动物呼吸麻醉机
直饮水设备
蠕动泵设备配套
薄膜厚度测量
猪精液分装机
商用直饮水机
小动物呼吸器
兰式残炭测定仪
大鼠异氟烷麻醉机
猪精液灌装机
Olympus倒置生物显微镜
成沟点测定仪
脂质体挤出器
动物麻醉机用异氟烷
压力除泡机
生理信号采集