- 2025-01-21 09:29:54地球物理探测技术
- 地球物理探测技术利用地球物理学原理和方法,探测和研究地球内部物质结构、性质及分布。它涵盖地震勘探、电法勘探、磁法勘探、重力勘探等方法,广泛应用于矿产勘查、地质构造研究、环境监测等领域。地球物理探测技术为矿产资源的开发利用提供重要依据,对地质灾害预警、环境保护也具有关键作用。
资源:4066个 浏览:32次展开
地球物理探测技术相关内容
地球物理探测技术资讯
-
- 《地下水污染可渗透反应格栅技术指南(试行)》等2项技术文件征求意见稿
- 本指南适用于可渗透反应格栅技术筛选、工程建设与运行管 理,可作为技术方案制定、工程设计、施工、运行状况监测、效 果评估、后期环境监管,和工程关闭的参考依据。
地球物理探测技术产品
产品名称
所在地
价格
供应商
咨询

- 联用技术
- 国外 美洲
- 面议
-
珀金埃尔默企业管理(上海)有限公司
售全国
- 我要询价 联系方式

- UAV600气象探测无人机
- 国内 北京
- 面议
-
北京曙光新航科技有限公司
售全国
- 我要询价 联系方式

- 皂素(技术级)
- 国外 美洲
- 面议
-
上海安谱实验科技股份有限公司
售全国
- 我要询价 联系方式

- 大气臭氧探测激光雷达 O3-LIDAR
- 国内 北京
- 面议
-
北京曙光新航科技有限公司
售全国
- 我要询价 联系方式

- SERS探测模块 C13560
- 国外 亚洲
- 面议
-
滨松光子学商贸(中国)有限公司
售全国
- 我要询价 联系方式
地球物理探测技术问答
- 2025-08-16 10:20:41戴永江《激光雷达技术》电子书
- 戴永江《激光雷达技术》电子书PDF 上下册谁有
96人看过
- 2024-10-28 15:39:48便携式色谱仪有哪些基本原理和技术?
- 一、便携式色谱仪的基本构造与原理便携式色谱仪是一种集成化高、结构紧凑的分析仪器,能够快速检测样品中的化合物。它通常由进样系统、色谱柱、检测器和数据处理系统等部分组成。设备通过气体或液体将样品带入色谱柱中二、便携式色谱仪的应用领域环境监测在环境保护方面,便携式色谱仪被广泛用于检测空气、水体和土壤中的污染物。其快速的检测速度和便携的特性,使得工作人员可以在污染源头直接获取数据,及时发现问题,避免污染物进一步扩散。食品安全检测在食品安全领域,便携式色谱仪主要用于检测食品中的农药残留、添加剂以及其他有害物质。设备不仅可以在现场检测,提高检测效率,减少运输样品带来的时间延迟,同时保证样品的原始状态,提升检测结果的准确性。医药行业应用 医药行业对化学成分的精确分析需求很高,便携式色谱仪能够在现场快速分析药品中的有效成分和杂质含量,提高药品研发、生产及质量检测的效率。便携式色谱仪在临床诊断中也得到了应用,帮助医生进行即时的药物代谢分析,为临床决策提供数据支持。图片中展示了仪器在医药实验室和医疗现场的应用场景,直观展现了便携式色谱仪的多样化用途。化工行业的质量控制化工企业中,便携式色谱仪能够实时监测生产流程中的化学成分,保证产品质量的一致性。便携式色谱仪的快速响应能力,使得企业可以在短时间内完成质量检查三、便携式色谱仪在使用中的优势便携式色谱仪与传统的台式色谱仪相比,具有无可替代的优势。其便携性使得设备可以用于多种现场分析需求,如紧急事故、流动检测等。由于其集成化设计,便携式色谱仪的操作更为简单,通常只需经过短时间培训即可上手。便携式色谱仪还具备快速检测的能力,有助于减少传统实验室检测所需的等待时间,极大提升了效率。其小型化的结构不需要复杂的电源支持,通常由电池驱动,适合长时间户外使用。四、便携式色谱仪选购与使用建议对于用户来说,选择合适的便携式色谱仪至关重要。要根据具体需求选择合适的色谱柱和检测器,确保设备能够高效分离和检测目标化合物。应关注设备的检测精度、响应时间和电池续航能力,保证仪器在不同环境下的可靠性。
322人看过
- 2022-12-30 11:41:53电力设备蒸汽冷凝水中乙二醇泄漏的早期探测
- 背景矿物燃料与核电力设施使用换热器,使工艺蒸汽冷凝回到液体形态。热交换器的工作原理是,通过从一种介质(蒸汽)中转移热量至另一种介质(空气、水、或乙二醇)中。很多新近的封闭式冷却水系统、电力设施使用乙二醇(C2H6O2)作为热传递液体,因为乙二醇有很高的热传递效率。虽然乙二醇是超级好的热传递流体,但如果它从冷却器中泄漏并进入冷凝蒸汽中时,会造成严重问题。在升高的温度与压力下,水中乙二醇会降解为有机酸,会酸化冷凝液,导致系统内快速的腐蚀。有机酸的增长也会严重破坏离子交换树脂床与矿物质脱除塔。发现早期针孔大的热交换器泄漏,对于保持维护电力设施与工艺设备的完整性,非常重要。虽然很多工厂使用痕量水平的胺来中和,来控制回路的pH,但这些胺常规地都是按照控制来自二氧化碳溶解产生的碳酸,来给药的。乙二醇泄漏造成的有机酸的大量流入,很容易压垮这种pH控制,并造成冷凝液明显的酸化。问题电厂通常检测pH与阳离子电导率来监测蒸汽回路水的纯度。然而,那些参数并不总是足够。充分早地探测乙二醇的早期泄漏以预防显著的下游问题十分重要。因为pH与阳离子电导率的偏离,仅仅在乙二醇分解之后才产生,这些检测对于探测泄漏来说,经常已经太晚了。水中乙二醇在热的高压蒸汽回路中降解。如果热交换器中发生泄漏,这种泄漏的现象在乙二醇降解之前,可能无法通过pH与电导率探测到。在这一点上,工艺设备(例如:矿物质脱除塔、树脂床、冷凝液抛光器、锅炉、涡轮机等)可能已经暴露在酸性的冷凝液或蒸汽中。乙二醇是一种含碳38.7%的有机分子,因此能够使用在线、连续的总有机碳(TOC)分析来探测到。Sievers® M系列在线TOC分析仪能够在乙二醇在冷凝液蒸汽中降解之前,更早地检测到乙二醇的泄漏。解决方案在Sievers分析仪进行的实验室研究中,Sievers M系列TOC分析仪表现出对乙二醇的回收率在97.3%-99.1% ,对于碳含量在0.5-25 ppm 碳 (1.3-64.7ppm 乙二醇)。Sievers M系列TOC分析仪的回收率总结如下表:在图2中,分析仪显示出对检测乙二醇有高的线性响应。基于定量回收率(≥97.3%),与高度的线性(R2=1.0000),Sievers M系列TOC分析仪很适用于检测冷凝液蒸汽中宽广范围的乙二醇浓度。几个著名的组织(EPRI、VGB、与 Eskom)建议100-300 ppb作为蒸汽循环补给水的合适的背景TOC水平。水或蒸汽循环中的这个TOC背景很好地位于Sievers M系列TOC分析仪的检测水平0.03 ppb之上,同时这个TOC背景也足够低,可以轻松检测背景TOC浓度之上的乙二醇泄漏造成的TOC偏移。由于乙二醇泄漏造成的事故的成本,从设备维修与更换、以及停产期间损失的能量产出等方面,可能是成百上千美元。由于乙二醇有毒并有危险,额外的缓和被污染的冷凝水也非常关键。使用Sievers M系列在线TOC分析仪,冷凝蒸汽每2分钟被分析一次,提供给设备操作者高解析度的数据,使用这些数据,可以快速识别并解决使用乙二醇溶液的热交换器的泄漏。参考文献1.Berry, D. and Browning, A. Guidelines for SelectingandMaintaining Glycol Based Heat Transfer Fluids.2011. Chem-Aqua, Inc.2.EPRI Lead in Boiler Chemistry R&D. PersonalCommunication. January 28, 2015.3.Ethylene vs. Propylene Glycol. www.dow.com.Accessed January4.22,2015.http://www.dow.com/heattrans/support/selection/ethylene-vs-propylene.htm.5.Heijboer, R., van Deelen-Bremer, M.H., Butter, L.M.,Zeijseink, A.G.L. The Behavior of Organics in aMakeup Water Plant. PowerPlant Chemistry. 8(2006):197-2026.Faroon, O., Tylenda, C., Harper, C.C., Yu, Dianyi,Cadore, A., Bosch, S., Wohlers, D., Plewak, D.,Carlson-Lynch, H. Toxicological Profile for EthyleneGlycol. 2010. US Agency for Toxic Substances andDisease Registry (ASTDR).7.Maughan, E.V., Staudt, U. TOC: The ContaminantSeldom Looked for in Feedwater Makeup and OtherSources of Organic Contamination in the Power Plant.PowerPlant Chemistry. 8(2006): 224-233.8.Rossiter, W.J. Jr., Godette, M., Brown, P.W., Galuk,K.G. An Investigation of the Degradation of AqueousEthylene Glycol and Propylene Glycol Solutions usingIon Chromatography. Solar Energy Materials. 11(1985): 455-467.9.Vidojkovic, S., Onjia, A., Matovic, B., Grahovac, N.,Maksimovic, V., Nastasovic, A. Extensive FeedwaterQuality Control and Monitoring Concept forPreventing Chemistry-related failures of Boiler Tubesin a Subcritical Thermal Power Plant. Applied ThermalEngineering. 59(2013): 683-694.
312人看过
- 2025-03-06 13:15:15济南防腐蚀流量计制造有哪些技术特点?
- 济南防腐蚀流量计制造:质量与技术的结合 随着工业自动化水平的不断提高,流量计作为测量和控制流体流量的重要工具,在众多行业中扮演着至关重要的角色。尤其是在一些需要防腐蚀性能的特殊环境下,防腐蚀流量计的应用越来越广泛。济南作为中国流量计制造的重镇,其防腐蚀流量计的制造技术日臻成熟,成为国内外市场的重要供应来源。本文将深入探讨济南防腐蚀流量计制造的技术优势、市场需求及其在多个行业中的应用。 防腐蚀流量计的技术优势 防腐蚀流量计是专为高腐蚀性介质设计的流量测量仪器,通常用于石油、化工、制药、电力等行业。济南的防腐蚀流量计制造商采用了先进的材料技术和精密的制造工艺,确保仪器的稳定性和准确性。防腐蚀流量计主要通过特殊的涂层、密封材料和耐腐蚀合金来抵御恶劣环境中的化学腐蚀,保证其长期可靠运行。 济南防腐蚀流量计制造商在产品设计上注重实用性与创新性的结合,采用了高性能的流量传感器和智能化的电子模块,使得流量计不仅具有较强的抗腐蚀性能,还能够提供高精度、高稳定性的流量测量结果。济南厂商还根据不同客户的需求,提供定制化的防腐蚀流量计解决方案,以满足各行业的特殊要求。 市场需求的持续增长 近年来,随着环保意识的增强和对生产工艺要求的提高,防腐蚀流量计的市场需求逐渐增大。特别是在石油、天然气、化工等行业,由于使用的原材料和流体介质具有高度腐蚀性,对流量计的要求更为严格。这使得济南的防腐蚀流量计制造商凭借其成熟的技术积累和先进的生产设备,迅速占领市场并成为行业领军者。 除了传统行业,随着新能源和环保产业的崛起,新的应用场景也对防腐蚀流量计提出了新的需求。例如,在氢气、天然气、化学品等高腐蚀性介质的运输与储存过程中,对流量计的防腐蚀性能提出了更高要求。济南防腐蚀流量计制造商积极响应市场变化,不断创新,研发出了适应不同工作环境的新型流量计,满足了各行业的高精度、高性能需求。 济南防腐蚀流量计的广泛应用 济南防腐蚀流量计广泛应用于多个领域,尤其是在石油、化工、电力、冶金、制药和水处理等行业。以石油化工行业为例,流量计用于测量酸性气体、化学液体及其他有腐蚀性的介质。在这些应用中,防腐蚀流量计的高耐腐蚀性和长期稳定性保证了生产过程的顺利进行。 在制药行业,防腐蚀流量计用于测量精密的化学物质流量,要求流量计不仅具备良好的防腐蚀能力,还需要的测量结果,以确保生产过程中药品的质量和安全。济南的防腐蚀流量计制造商通过采用新的制造工艺和材料技术,满足了这一行业的需求。 总结 济南的防腐蚀流量计制造技术在国内外市场中占据了重要地位。凭借其的技术优势和的制造工艺,济南的防腐蚀流量计能够应对各类恶劣环境中的流量测量需求。随着市场对防腐蚀流量计的需求不断增长,济南的制造商正不断推出创新产品,以满足不同行业的特殊需求。未来,随着科技的进步和工业自动化水平的提升,济南的防腐蚀流量计将在更多领域发挥更加重要的作用。
144人看过
- 2022-11-18 16:15:48反应离子刻蚀技术
- 反应离子刻蚀概述:反应离子腐蚀技术是一种各向异性很强、选择性高的干法腐蚀技术。它是在真空系统中利用分子气体等离子来进行刻蚀的,利用了离子诱导化学反应来实现各向异性刻蚀,即是利用离子能量来使被刻蚀层的表面形成容易刻蚀的损伤层和促进化学反应,同时离子还可清除表面生成物以露出清洁的刻蚀表面的作用。主要用于Si、SiO2、SiNx、半导体材料、聚合物、金属的刻蚀以及光刻胶的去除等,广泛应用于物理,生物,化学,材料,电子等领域。 工作原理:通常情况下,反应离子刻蚀机的整个真空壁接地, 作为阳极, 阴极是功率电极, 阴极侧面的接地屏蔽罩可防止功率电极受到溅射。要腐蚀的基片放在功率电极上。腐蚀气体按照一定的工作压力和搭配比例充满整个反应室。对反应腔中的腐蚀气体, 加上大于气体击穿临界值的高频电场, 在强电场作用下, 被高频电场加速的杂散电子与气体分子或原子进行随机碰撞, 当电子能量大到一定程度时, 随机碰撞变为非弹性碰撞, 产生二次电子发射, 它们又进一步与气体分子碰撞, 不断激发或电离气体分子。这种激烈碰撞引起电离和复合。当电子的产生和消失过程达到平衡时, 放电能继续不断地维持下去。由非弹性碰撞产生的离子、电子及及游离基(游离态的原子、分子或原子团) 也称为等离子体, 具有很强的化学活性, 可与被刻蚀样品表面的原子起化学反应, 形成挥发性物质, 达到腐蚀样品表层的目的。同时, 由于阴极附近的电场方向垂直于阴极表面, 高能离子在一定的工作压力下, 垂直地射向样品表面, 进行物理轰击, 使得反应离子刻蚀具有很好的各向异性。所以,反应离子刻蚀包括物理和化学刻蚀两者的结合。 刻蚀气体的选择对于多晶硅栅电极的刻蚀,腐蚀气体可用Cl2或SF6,要求对其下层的栅氧化膜具有高的选择比。刻蚀单晶硅的腐蚀气体可用Cl2/SF6或SiCl4/Cl2;刻蚀SiO2的腐蚀气体可用CHF3或CF4/H2;刻蚀Si3N4的腐蚀气体可用CF4/O2、SF6/O2或CH2F2/CHF3/O2;刻蚀Al(或Al-Si-Cu合金)的腐蚀气体可用Cl2、BCl3或SiCl4;刻蚀W的腐蚀气体可用SF6或CF4;刻蚀光刻胶的腐蚀气体可用氧气。对于石英材料, 可选择气体种类较多, 比如CF4、CF4+ H2、CHF3 等。我们选用CHF3 气体作为石英的腐蚀气体。其反应过程可表示为:CHF3 + e——CHF+2 + F (游离基) + 2e,SiO 2 + 4F SiF4 (气体) + O 2 (气体)。SiO 2 分解出来的氧离子在高压下与CHF+2 基团反应, 生成CO ↑、CO 2↑、H2O ↑、O F↑等多种挥发性气体。对于锗材料、选用含F 的气体是十分有效的。然而, 当气体成份中含有氢时, 刻蚀将受到严重阻碍, 这是因为氢可以和氟原子结合, 形成稳定的HF, 这种双原子HF 是不参与腐蚀的。实验证明, SF6 气体对Ge 有很好的腐蚀作用。反应过程可表示为:SF6 + e——SF+5 + F (游离基) + 2e,Ge + 4F——GeF4 (挥发性气体) 。 设备:典型的(平行板)RIE系统包括圆柱形真空室,晶片盘位于室的底部。晶片盘与腔室的其余部分电隔离。气体通过腔室顶部的小入口进入,并通过底部离开真空泵系统。所用气体的类型和数量取决于蚀刻工艺;例如,六氟化硫通常用于蚀刻硅。通过调节气体流速和/或调节排气孔,气体压力通常保持在几毫托和几百毫托之间的范围内。存在其他类型的RIE系统,包括电感耦合等离子体(ICP)RIE。在这种类型的系统中,利用RF供电的磁场产生等离子体。虽然蚀刻轮廓倾向于更加各向同性,但可以实现非常高的等离子体密度。平行板和电感耦合等离子体RIE的组合是可能的。在该系统中,ICP被用作高密度离子源,其增加了蚀刻速率,而单独的RF偏压被施加到衬底(硅晶片)以在衬底附近产生定向电场以实现更多的各向异性蚀刻轮廓。 操作方法:通过向晶片盘片施加强RF(射频)电磁场,在系统中启动等离子体。该场通常设定为13.56兆赫兹的频率,施加在几百瓦特。振荡电场通过剥离电子来电离气体分子,从而产生等离子体 。在场的每个循环中,电子在室中上下电加速,有时撞击室的上壁和晶片盘。同时,响应于RF电场,更大质量的离子移动相对较少。当电子被吸收到腔室壁中时,它们被简单地送到地面并且不会改变系统的电子状态。然而,沉积在晶片盘片上的电子由于其DC隔离而导致盘片积聚电荷。这种电荷积聚在盘片上产生大的负电压,通常约为几百伏。由于与自由电子相比较高的正离子浓度,等离子体本身产生略微正电荷。由于大的电压差,正离子倾向于朝向晶片盘漂移,在晶片盘中它们与待蚀刻的样品碰撞。离子与样品表面上的材料发生化学反应,但也可以通过转移一些动能来敲除(溅射)某些材料。由于反应离子的大部分垂直传递,反应离子蚀刻可以产生非常各向异性的蚀刻轮廓,这与湿化学蚀刻的典型各向同性轮廓形成对比。RIE系统中的蚀刻条件很大程度上取决于许多工艺参数,例如压力,气体流量和RF功率。 RIE的改进版本是深反应离子蚀刻,用于挖掘深部特征。
441人看过


