仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

技术中心

当前位置:仪器网>技术中心> 科技文献> 正文

Lightigo 团队部分参考文献名录

来源:北京易科泰生态技术有限公司 更新时间:2020-02-19 00:00:00 阅读量:104

Lightigo 团队部分参考文献名录


image.pngLightigo为欧洲工程技术中心(CEITEC)的衍生公司,受欧洲“生命科学与材料技术中心”支持,并与其它学术机构如捷克科学院等在生命科学领域、分析化学领域、新材料领域长期合作、共同创新。公司成员均为布尔诺科技大学激光光谱与化学分析实验室的科研专家----因此将与您合作、为您提供服务和支持的,不仅仅是优秀的工程师,更是优秀的科学家。

Lightigo的激光光谱分析及化学分析实验室起始于1997年,在LIBS应用技术研发领域具有近20年的深厚经验,其代表性产品为系列 LIBS元素分析系统、SyncRay 时序控制发生器等。

北京易科泰生态技术公司作为Lightigo公司在中国的代理,以及CEITEC与国内合作的纽带,致力于欧洲先进LIBS应用技术的引进、推广和协同创新,将一部分技术定制化、国产化,为国内科研人员提供个性化的服务和产品。欢迎联系垂询(邮箱:sales@eco-tech.com.cn; support@eco-tech.com.cn; 电话:82611269)

Jozef Kaiser 教授个人简介

image.pngJozef Kaiser 教授2001年获得博士学位,2013年起任布尔诺科技大学正教授。今发表文章160余篇,引用1800余次。

在师从意大利拉奎拉大学Reale 教授读博期间,参与研发的46.9 nm毛细管放电soft X-ray 激光器于2002年投入使用,成为第二大产品。

他在LIBS领域具有20余年科研经验,并一直与世界YL的实验室进行着广泛的合作交流,例如意大利特里亚斯特市的Elettra同步加速器实验室、美国橡树岭实验室、沈阳自动化研究所、意大利特里亚斯特市的Elettra同步加速器、瑞典斯德哥尔摩卡罗林斯卡学院、法国巴黎巴斯德研究所等。

Jozef Kaiser 教授同时是捷克-以色列科学研究和创新商会成员、Ioannes Marcus Marci光谱学会主要委员会成员、以及捷克共和国材料科学与工程基金评审理事会成员。

Jozef Kaiser 教授2013年起领导布尔诺科技大学和CEITEC 的激光光谱学研究,主要方向为LIBS、 rLIBS、stand-off LIBS、DP LIBS、LIBS + LIFS基础应用研究。


植物,藻类,生物,健康,环境等领域:

1.Pavlína Modlitbová, Pavel Pořízka, Jozef Kaiser, Laser-induced breakdown spectroscopy as a promising tool in the elemental bioimaging of plant tissues, [J] TrAC Trends in Analytical Chemistry Volume 122 January 2020 Article 115729

2.Pavlína Modlitbová, Pavel Pořízka, Sára Střítežská, Štěpán Zezulka, Jozef Kaiser, Detail investigation of toxicity, bioaccumulation, and translocation of Cd-based quantum dots and Cd salt in white mustard, [J] ChemosphereIn press, journal pre-proof. Available online 12 February 2020 Article 126174,

3.Pavlína Modlitbová, Antonín Hlaváček, Tereza Švestková, Pavel Pořízka, Jozef Kaiser , The effects of photon up-conversion nanoparticles on the growth of radish and duckweed: Bioaccumulation, imaging, and spectroscopic studies, [J], Chemosphere, Volume 225, June 2019, Pages 723-734

4.Pavlína M, Karel N, Pavel P, Jakub K, Přemysl L, Helena Z. G, Kaiser J , Comparative investigation of toxicity and bioaccumulation of Cd -based quantum dots and Cd salt in freshwater plant Lemna minor L. [J], Ecotoxicology and Environmental Safety, 147 (2018) 334–341.

5.Kaiser J, Klus J, Lubal P, Novotný K, Pořízka P, Zlamalova-Gargosova H, Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L. [J]. Ecotoxicology and Environmental Safety, 2018, 147: 334-341.

6.D. Prochazka, M. Mazura, O. Samek, K. Rebrošová, J. Kaiser , Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria, [J], Spectrochimica Acta Part B: Atomic Spectroscopy, Volume 139, January 2018, Pages 6-12

7.Krajcarová L, Novotný K, Kummerová M, J. Dubová J, Gloser V, Kaiser J. Mapping of the spatial distribution of silver nanoparticles in root tissues of Vicia faba by laser-induced breakdown spectroscopy (LIBS) [J], Talanta 173 (2017) 28–35.

8.Škarková P, et al. 2d distribution mapping of quantum dots injected onto filtration paper by laser-induced breakdown spectroscopy [J] Spectrochimica Acta Part B: Atomic Spectroscopy 2017, 131: 107-114.

9.Konecna M,Novotny K, et al. Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy [J] Spectrochimica Acta Part B: Atomic Spectroscopy Volume 101, 1 November 2014, Pages 220-225

10.Pořízka, P, et al. Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review. [J] Sensors 2014, 14(9), 17725-17752

11.Krajcarová, L. ; et. al. Copper Transport and Accumulation in Spruce Stems (Picea abies (L.) Karsten) Revealed by Laser-Induced Breakdown Spectroscopy, [J]. International Journal of Electrochemical Science (2013)

12.Lucie K, Novotny K, Petr B, Ivo P, Petra K, Vojtech A, Madhavi Z. Rene K, Kaiser J, Copper Transport and Accumulation in Spruce Stems Revealed by Laser -Induced Breakdown Spectroscopy, [J]. Electrochemical Science, 8 (2013) 4485 –4504.

13.Zitka, O; Krystofova, O; Hynek, D; Sobrova, P; Kaiser, J; Sochor, J; Zehnalek, J; Babula, P; Ferrol, N;, Kizek, R; Adam, V, Metal Transporters in Plants [M]. Heavy Metal Stress in Plants. 2013: 19-41.

14.Kaiser, J. ; et. al. Trace elemental analysis by laser-induced breakdown spectroscopy-Biological applications, [J]. Surface Science Reports (2012)

15.Kaiser J, Novotny K, Martin M Z, et al. Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications [J]. Surface Science Reports, 2012, 67 (11–12): 233-243.

16.Michaela G, Jozef K, Karel N, et al. Utilization of laser-assisted analytical methods for monitoring of lead and nutrition elements distribution in fresh and dried Capsicum annuum l. leaves [J]. Microscopy Research and Technique, 2011, 74 (9): 845-852.

17.Diopan V, Shestivska V, Zitka O, et al. Determination of Plant Thiols by Liquid Chromatography Coupled with Coulometric and Amperometric Detection in Lettuce Treated by Lead(II) Ions [J]. Electroanalysis, 2010, 22 (11): 1248-1259.

18.Kaiser J, Galiova M, Novotny K, et al. Utilization of the Laser Induced Plasma Spectroscopy for monitoring of the metal accumulation in plant tissues with high spatial resolution [J]. Networking IEEE/ACM Transactions on, 2010, 20 (4): 1096-1111.

19.Krajcarová, L. ; et. al. Mapping of elements distribution in plant samples using LIBS. Journal: 10th Workshop of Physical Chemists and Electrochemists, Faculty of Science MU, ed. Libuše Trnková (2010)

20.Kryštofová, O. ; et. al. An utilizing of laser induced breakdown spectroscopy for metal ions detection, [J]. Listy cukrovarnické a řepařské (2010)

21.Kaiser J, Galiova M, Novotny K, et al. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry [J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2009, 64 (1): 67-73.

22.Krystofova O, Shestivska V, Galiova M, et al. Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions [J]. Sensors, 2009, 9 (7): 5040-5058.

23.Kaiser J, Galiova M, Novotny K, et al. Mapping of the heavy -metal pollutants in plant tissues by Laser -Induced Breakdown Spectroscopy [C] Spectrochimica Acta Part B 64 (2009) 67–73.

24.Masařík, M. ; et. al. Metallomics of melanoma animal tissues, [J] International Journal of Molecular Medicine (2009)

25.Galiova M, Kaiser J, Novotny K, et al. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry [J]. Applied Physics A, 2008, 93 (4): 917-922.

26.Sona K, Pavel R, Olga K, et al. Multi-instrumental analysis of tissues of sunflower plants treated with silver(I) ions – plants as bioindicators of environmental pollution [J]. Sensors, 2008, 8 (1): 445-463.

27.Stejskal K,Mendelova Z, et al., Study of effects of lead ions on sugar beet [J]. Listy Cukrovarnicke A Reparske, 2008, 124 (4): 116-119.

28.Galiova M, Kaiser J, Novotny K, et al. Utilization of laser induced breakdown spectroscopy for investigation of the metal accumulation in vegetal tissues [J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2007, 62 (12): 1597-1605.

29.18. Kaiser J, Samek O, Reale L, et al . Monitoring of the heavy -metal hyperaccumulation in vegetal tissues by X -ray radiography and by femto-second laser induced breakdown spectroscopy [J]. Microscopy Research and Technique, 2007, 70 (70): 147-153.

30.Kaiser J, Novotny K, Malina R, et al. Employment of laser spectrometry in heavy metal analysis [J]. Listy Cukrovarnicke A Reparske, 2007, 123: 332-332.


地质领域

31.Klus J, et. al. Application of self-organizing maps to the study of U-Zr-Ti-Nb distribution in sandstone-hosted uranium ores [J]. Spectrochimica Acta Part B: Atomic Spectroscopy 2017, 131: 66-73.

32.Pořízka P, et. al. Detection of fluorine using laser-induced breakdown spectroscopy and Raman spectroscopy [J]. Journal of Analytical Atomic Spectrometry, 2017, 32: 277-288.

33.Pořízka, P, et. al. Impact of Laser-Induced Breakdown Spectroscopy data normalization on multivariate classification accuracy [J]. Journal of Analytical Atomic Spectrometry2017,32, 277-288

34.Pořízka, P, et al. Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis [J] Scientific Reports 2017, 7: 3160.

35.Pořízka, P, et al. Assessment of the most effective part of echelle laser-induced plasma spectra for further classification using Czerny-Turner spectrometer [J] Spectrochimica Acta Part B: Atomic Spectroscopy 2016, 124 (1): 116-123.

36.Proksova K, Novotny K, Kaiser J, et al. Study of elemental distribution in urinary stones by laser ablation inductively coupled plasma mass spectrometry., 10th Workshop of Physical Chemists and Electrochemists, Faculty of Science MU, ed. Libuše Trnková (2010)


建筑和文物

37.E. Pospíšilováa, K. Novotnýa,b,P. Pořízkac, D. Hradild,e, J. Hradilováe, J. Kaiserc, V. Kanickýa, Depth-resolved analysis of historical painting model samples by means of laser-induced breakdown spectroscopy and handheld X-ray fluorescence,[J]. Spectrochimica Acta Part B, 147 (2018) 100–108

38.Vitkova G, Prokes L, Novotny K, et al. Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off, and table-top, laser-induced breakdown spectroscopy [J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2014, 101: 191-199.

39.Vítková, G. ; et. al.,Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural network, [J]. Spectrochimica Acta Part B: Atomic Spectroscopy (2012)

40.Galiová, M. ; et. al. Multiemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spektrometryle, [J] Applied Optics (2010)

41.Hrdlička, A. ; et. al. Development of a remote laser-induced breakdown spectroscopy system for investigation of calcified tissue samples. [J]. Applied Optics (2010)

材料;交通;矿业;

42.Tomáš Zikmund, Jakub Šalplachta, Aneta Zatočilová, Adam Břínek, Jozef Kaiser,Computed tomography based procedure for reproducible porosity measurement of additive manufactured samples,[J]. NDT & E InternationalVolume 103 April 2019 Pages 111-118

43.Prochazka D, Bilik M, Prochazkova P, et al. Detection of visually unrecognizable braking tracks using laser-induced breakdown spectroscopy, a feasibility study [J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2015, 118: 90-97.

44.P. Pořízka et al. Estimating the grade of Mg corrosion using laser-induced breakdown spectroscopy, [J]. Journal of Analytical Atomic Spectrometry Issue 10, 2015

45.Prochazka D, Bilik M, Prochazkova P, et al. Detection of tire tread particles using laser-induced breakdown spectroscopy [J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2015, 108:1-7.

46.Vitkova G, Prokes L, Novotny K, et al. Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off, and table-top, laser-induced breakdown spectroscopy [J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2014, 101: 191-199.

47.Pořízka, P. ; et. al.High repetition rate laser-induced breakdown spectroscopy using acousto-optically gated detection, [J]. Review of Scientific Instruments (2014)

48.Pouzar, M. ; et. al. Effect of particle size distribution in laser-induced breakdown spectroscopy analysis of mesoporous V-SiO2 catalysts. [J]. Journal of Analytical Atomic Spectrometry (2011)

49.Hrdlicka A, Kanicky V, Novotny K, et al. Correlation of Acoustic and Optical Emission Signals Produced at 1064 and 532 nm Laser-induced Breakdown Spectroscopy (LIBS) of Glazed Wall Tiles [C]. Spectrochimica Acta Part B: Atomic Spectroscopy (2009)


工业(钢,铝合金)

50.Pořízka, P, et. al. Impact of Laser-Induced Breakdown Spectroscopy data normalization on multivariate classification accuracy [J]. Journal of Analytical Atomic Spectrometry2017,32, 277-288

51.Klus J, et. al. Application of self-organizing maps to the study of U-Zr-Ti-Nb distribution in sandstone-hosted uranium ores [J]. Spectrochimica Acta Part B: Atomic Spectroscopy 2017, 131: 66-73.

52.Sládková L, et al. Improvement of the Laser-Induced Breakdown Spectroscopy method sensitivity by the usage of combination of Ag-nanoparticles and vacuum conditions [J] Spectrochimica Acta Part B: Atomic Spectroscopy 2017, 127: 48-55.

53.Klus J, et al. Multivariate approach to the chemical mapping of uranium in sandstone-hosted uranium ores analyzed using double pulse laser-induced breakdown spectroscopy [J] Spectrochimica Acta Part B: Atomic Spectroscopy 2016, 123(1): 143-149.

54.Pořízka P, et al. Laser-Induced Breakdown Spectroscopy coupled with chemometrics for the analysis of steel: The issue of spectral outliers filtering [J] Spectrochimica Acta Part B: Atomic Spectroscopy 2016, 113: 114-120.

55.Porizka P, Rocnakova I, Klus J, et al. Estimating the grade of Mg corrosion using laser-induced breakdown spectroscopy [J]. Journal of Analytical Atomic Spectrometry, 2015, 30 (10): 2099-2106.

56.Porizka P, Klessen B, Kaiser J, et al. High repetition rate laser-induced breakdown spectroscopy using acousto-optically gated detection [J]. Review of Scientific Instruments, 2014, 85 (7): 073104-073104-8.


其它 (技术研究;纳米材料分析;等)

57.Skočovská, K. ; et. al. , Skočovská K, et al. Optimization of liquid jet system for laser-induced breakdown spectroscopy analysis [J] Review of Scientific Instruments, 2016, 87 (4).

58.Klus J, et al., Effect of experimental parameters and resulting analytical signal statistics in laser-induced breakdown spectroscopy [J] Spectrochimica Acta Part B: Atomic Spectroscopy 2016, 126 (1): 6-10.

59.Ryvolová, M. ; et. al. Modern Micro and Nanoparticle-Based Imaging Techniques. [J]. Sensors (2012)

60.D Prochazka, J Kaiser, K Novotny.; et al., Recent development of double pulse laser induced breakdown spectroscopy (DP-LIBS) setup., [J]. J Biochem Tech (2010) 2(5):S116-S117

61.Novotny J, Malina R, Kaiser J, et al. Implementation of an autofocus algorithm based on searching the best in-focus image into a table-top laser-induced breakdown spectroscopy setup [J]. Optical Engineering, 2009, 48 (10): 604-604.

62.Novotny K, Lutzky F, Galiova M, et al. Double pulse laser ablation and plasma: time resolved spectral measurements [J]. Chemicke Listy, 2008, 102 (16).


参与评论

全部评论(0条)

相关产品推荐(★较多用户关注☆)
你可能还想看
  • 技术
  • 资讯
  • 百科
  • 应用
  • 水质监测仪构成部分
    其核心功能是对水体中的各项参数进行实时监测,以确保水质符合国家和地区的相关标准。为了实现的监测效果,水质监测仪由多个关键组件构成,每个部分都发挥着不可或缺的作用。本文将详细解析水质监测仪的构成部分,帮助您更好地了解其工作原理和应用价值。
    2025-10-2177阅读 水质监测仪
  • 质量流量计三部分组成
    它能够精确测量气体、液体或蒸汽等流体的质量流量,具有较高的测量精度和较广的适用范围。本文将详细介绍质量流量计的三大核心组成部分,这些组成部分相辅相成,共同确保质量流量计能够稳定高效地工作。
    2025-10-18226阅读 质量流量计
  • 航空重力梯度仪构成部分
    通过在飞行器上安装该仪器,能够实时监测和记录地面重力场的变化,提供高分辨率的重力数据,从而为地质结构的研究、资源探测以及灾害预警等提供重要支持。本文将深入分析航空重力梯度仪的主要构成部分,探讨各个组件的功能与作用,帮助读者全面了解其工作原理和应用价值。
    2025-10-1969阅读 重力梯度仪
  • 超声探伤仪的构成部分
    通过声波的反射、传播及衰减等特性,超声探伤仪能够准确判断材料内部的裂纹、空洞以及其他不良缺陷。本篇文章将深入探讨超声探伤仪的主要构成部分,帮助读者全面了解其工作原理和技术特点。
    2025-10-2174阅读 超声探伤仪
  • 连续流动分析仪的构成部分
    它的主要功能是通过自动化的流程分析对液体样品中的化学成分进行精确测定。本文将深入探讨连续流动分析仪的基本构成部分,帮助读者全面了解该仪器的工作原理和设计特点。
    2025-10-20119阅读 流动分析仪
  • 查看更多
版权与免责声明

①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。

②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。

③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。

④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi

关于作者

北京易科泰生态技术有限公司成立于2002年,为国家高新技术企业,总部位于北京中关村翠湖云中心,致力于“生态、农业、健康”科学研究与监测/检测技术方案推广、研发与应用服务

更多>>ta的最新文章
一粒种子的 “元素密码”:FireFly LIBS 如何看透种质优劣?
叶绿素荧光成像技术应用——组培(愈伤组织)篇
易科泰助力西北沙生植物降雨适应性研究 揭示裸果木光合与抗氧化响应机制
关注 私信
热点文章
基尔中国 超声波流量计的计量校准
吉林大学“盐渍土中不同类型孔隙水的差异性冻结行为及其对土体动力特性的影响”成果发布| GDS温控动三轴应用实例
文献分享 I 光甘草定增强α-熊果苷局部渗透性和抗黑素生成作用的分子机制
基尔中国 深入解析:雷达物位计的关键参数与术语
突破成像壁垒!这款"透视"神器,让生命研究更清晰
基尔中国 精巧型压力变送器的产品结构及工作原理
基尔中国 温度变送器的种类分析及选型应用
河北工业大学:福立气相色谱数据的精确度与重复性完全满足甚至超出了高端科研出版物的要求
基尔中国 讲解流量开关类型以及工作原理
基尔中国 冷却水流量开关基础知识
近期话题
相关产品

在线留言

上传文档或图片,大小不超过10M
换一张?
取消