FMT 150藻类培养与在线监测系统文献列表
(2020年-2023年1月)
1. Adriana R, et al. 2023. Microalgae adaptation as a strategy to recycle the aqueous phase from hydrothermal liquefaction. Bioresource Technology 371: 128631.
2. Masuda T, et al. 2023. The balance between photosynthesis and respiration explains the niche differentiation between Crocosphaera and Cyanothece. Computational and Structural Biotechnology Journal 21: 58-65.
3. Mattoon EM, et al. 2023. High‐throughput identification of novel heat tolerance genes via genome‐wide pooled mutant screens in the model green alga Chlamydomonas reinhardtii. Plant, Cell & Environment 46(3): 865-888.
4. Treves H, et al. 2022. Carbon flux through photosynthesis and central carbon metabolism show distinct patterns between algae, C3 and C4 plants. Nature Plants 8: 78–91.
5. Ozawa SI, et al. 2022. Algal PETC-Pro171-Leu suppresses electron transfer in cytochrome b6f under acidic lumenal conditions. Plant Physiology. Doi: 10.1093/plphys/kiac575.
6. Trivedi J, et al. 2022. Enhanced lipid production in Scenedesmus obliquus via nitrogen starvation in a two-stage cultivation process andevaluation for biodiesel production. Fuel 316: 123418.
7. Park H, et al. 2022. Co-production of biofuel, bioplastics and biochemicals during extended fermentation of Halomonas bluephagenesis. Microbial biotechnology 16(2): 307-321.
8. Zhang N, et al. 2022. Systems-wide analysis revealed shared and unique responses to moderate and acute high temperatures in the green alga Chlamydomonas reinhardtii. Commun Biol 5: 460.
9. Zhang HR, et al. 2022. The DIC carbon isotope evolutions during CO2 bubbling: implications for ocean acidification laboratory culture. Frontiers in Marine Science 9: 2603.
10. Zaki A, et al. 2022. Synthesis, purification and characterization of Plectonema derived AgNPs with elucidation of the role of protein in nanoparticle stabilization. RSC Advances 12(4): 2497-2510.
11. Harth FM, et al. 2022. Ru/C‐Catalyzed Hydrogenation of Aqueous Glycolic Acid from Microalgae–Influence of pH and Biologically Relevant Additives. ChemistryOpen 11(7): e202200050.
12. MATTILA H, et al. 2022. Differences in susceptibility to photoinhibition do not determine growth rate under moderate light in batch or turbidostat – a study with five green algae. PHOTOSYNTHETICA 60 (1): 10-20.
13. Vasile NS, et al. 2021. Computational analysis of dynamic light exposure of unicellular algal cells in a flat-panel photobioreactor to support light-induced CO2 bioprocess development. Frontiers in microbiology 12: 639482.
14. Rabouille S, et al. 2021. Electron & Biomass Dynamics of Cyanothece Under Interacting Nitrogen & Carbon Limitations. Frontiers in Microbiology 12: 620.
15. Polerecky L, et al. 2021. Temporal Patterns and Intra-and Inter-Cellular Variability in Carbon and Nitrogen Assimilation by the Unicellular Cyanobacterium Cyanothece sp. ATCC 51142. Frontiers in Microbiology 12: 620915.
16. Lang I, et al. 2021. Plasticity of the Red Alga Dixoniella grisea for the Production of Additives for Lubricants. Plants 10(9): 1836.
17. Kedem I, et al. 2021. Juggling Lightning: How Chlorella ohadii handles extreme energy inputs without damage. Photosynthesis Research 6: 1-16.
18. Norsker NH, et al. 2021. Developing microalgal oil production for an outdoor photobioreactor. Journal of Applied Phycology. doi: 10.1007/S10811-021-02374-7.
19. Klein BC, et al. 2021. Effect of light, CO2 and nitrate concentration on Chlorella vulgaris growth and composition in a flat-plate photobioreactor. Brazilian Journal of Chemical Engineering 38(2): 251–263.
20. Amer M, et al. 2020. Low Carbon Strategies for Sustainable Bio-alkane Gas Production and Renewable Energy. Energy & Environmental Science 13(6): 1818-1831.
21. Kanygin A, et al. 2020. Rewiring photosynthesis: a photosystem I-hydrogenase chimera that makes H2 in vivo. Energy & Environmental Science 13: 2903-2914.
22. Treves H, et al. 2020. Multi-omics reveals mechanisms of total resistance to extreme illumination of a desert alga. Nature Plants 6(8): 1031-1043..
23. Klassen V, et al. 2020. Wastewater-borne microalga Chlamydomonas sp.: A robust chassis for efficient biomass and biomethane production applying low-N cultivation strategy. Bioresource Technology 315: 123825.
24. Canonico M, et al. 2020. Plasticity of Cyanobacterial Thylakoid Microdomains Under Variable Light Conditions. Frontiers in Plant Science 11:586543.
25. Baránková B, et al. 2020. Light absorption and scattering by high light-tolerant, fast-growing Chlorella vulgaris IPPAS C-1 cells. Algal Research 49: 2211-9264.
26. Zhang B, et al. 2020. The carbonate concentration mechanism of Pyropia yezoensis (Rhodophyta): Evidence from transcriptomics and biochemical data. BMC plant biology 20(1): 424-424.
27. Trivedi J, et al. 2020. Evaluating Cell Disruption Strategies for Aqueous Lipid Extraction from Oleaginous Scenedesmus Obliquus at High Solid Loadings. European Journal of Lipid Science and Technology 122(4): 1900328.
28. Sukaová K, et al. 2020. Biphasic optimization approach for maximization of lipid production by the microalga Chlorella pyrenoidosa. Folia Microbiologica 65: 901–908.
29. Pattanaika B, et al. 2020. Introduction of a green algal squalene synthase enhances squalene accumulation in a strain of Synechocystis sp. PCC 6803. Metabolic Engineering Communications 10: e00125.
全部评论(0条)
LCSD-iFL便携式光合-荧光复合测量系统
报价:面议 已咨询 2572次
UGT径流水蚀监测系统
报价:面议 已咨询 2089次
ku-pf非饱和导水率测量系统
报价:面议 已咨询 2229次
SEDIMAT 4-12 土壤粒径分析系统
报价:面议 已咨询 3903次
ACE-Net 多通道土壤呼吸监测系统
报价:面议 已咨询 3305次
SoilBox-FMS 便携式土壤呼吸测量系统
报价:面议 已咨询 279次
FKM多光谱荧光动态显微成像系统
报价:面议 已咨询 330次
Ecodrone®高光谱-激光雷达-红外热成像无人机遥感系统
报价:面议 已咨询 441次
①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。
②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。
③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi
参与评论
登录后参与评论