仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

技术中心

当前位置:仪器网>技术中心> 科技文献> 正文

FMT 150藻类培养与在线监测系统文献列表 (2020年-2022年2月)

来源:北京易科泰生态技术有限公司 更新时间:2022-05-05 00:00:00 阅读量:143

FMT 150藻类培养与在线监测系统文献列表

(2020年-2023年1月)

1. Adriana R, et al. 2023. Microalgae adaptation as a strategy to recycle the aqueous phase from hydrothermal liquefaction. Bioresource Technology 371: 128631.

2. Masuda T, et al. 2023. The balance between photosynthesis and respiration explains the niche differentiation between Crocosphaera and Cyanothece. Computational and Structural Biotechnology Journal 21: 58-65.

3. Mattoon EM, et al. 2023. Highthroughput identification of novel heat tolerance genes via genomewide pooled mutant screens in the model green alga Chlamydomonas reinhardtii. Plant, Cell & Environment 46(3): 865-888.

4. Treves H, et al. 2022. Carbon flux through photosynthesis and central carbon metabolism show distinct patterns between algae, C3 and C4 plants. Nature Plants 8: 78–91.

5. Ozawa SI, et al. 2022. Algal PETC-Pro171-Leu suppresses electron transfer in cytochrome b6f under acidic lumenal conditions. Plant Physiology. Doi: 10.1093/plphys/kiac575.

6. Trivedi J, et al. 2022. Enhanced lipid production in Scenedesmus obliquus via nitrogen starvation in a two-stage cultivation process andevaluation for biodiesel production. Fuel 316: 123418.

7. Park H, et al. 2022. Co-production of biofuel, bioplastics and biochemicals during extended fermentation of Halomonas bluephagenesis. Microbial biotechnology 16(2): 307-321.

8. Zhang N, et al. 2022. Systems-wide analysis revealed shared and unique responses to moderate and acute high temperatures in the green alga Chlamydomonas reinhardtii. Commun Biol 5: 460.

9. Zhang HR, et al. 2022. The DIC carbon isotope evolutions during CO2 bubbling: implications for ocean acidification laboratory culture. Frontiers in Marine Science 9: 2603.

10. Zaki A, et al. 2022. Synthesis, purification and characterization of Plectonema derived AgNPs with elucidation of the role of protein in nanoparticle stabilization. RSC Advances 12(4): 2497-2510.

11. Harth FM, et al. 2022. Ru/CCatalyzed Hydrogenation of Aqueous Glycolic Acid from MicroalgaeInfluence of pH and Biologically Relevant Additives. ChemistryOpen 11(7): e202200050.

12. MATTILA H, et al. 2022. Differences in susceptibility to photoinhibition do not determine growth rate under moderate light in batch or turbidostat – a study with five green algae. PHOTOSYNTHETICA 60 (1): 10-20.

13. Vasile NS, et al. 2021. Computational analysis of dynamic light exposure of unicellular algal cells in a flat-panel photobioreactor to support light-induced CO2 bioprocess development. Frontiers in microbiology 12: 639482.

14. Rabouille S, et al. 2021. Electron & Biomass Dynamics of Cyanothece Under Interacting Nitrogen & Carbon Limitations. Frontiers in Microbiology 12: 620.

15. Polerecky L, et al. 2021. Temporal Patterns and Intra-and Inter-Cellular Variability in Carbon and Nitrogen Assimilation by the Unicellular Cyanobacterium Cyanothece sp. ATCC 51142. Frontiers in Microbiology 12: 620915.

16. Lang I, et al. 2021. Plasticity of the Red Alga Dixoniella grisea for the Production of Additives for Lubricants. Plants 10(9): 1836.

17. Kedem I, et al. 2021. Juggling Lightning: How Chlorella ohadii handles extreme energy inputs without damage. Photosynthesis Research 6: 1-16.

18. Norsker NH, et al. 2021. Developing microalgal oil production for an outdoor photobioreactor. Journal of Applied Phycology. doi: 10.1007/S10811-021-02374-7.

19. Klein BC, et al. 2021. Effect of light, CO2 and nitrate concentration on Chlorella vulgaris growth and composition in a flat-plate photobioreactor. Brazilian Journal of Chemical Engineering 38(2): 251–263.

20. Amer M, et al. 2020. Low Carbon Strategies for Sustainable Bio-alkane Gas Production and Renewable Energy. Energy & Environmental Science 13(6): 1818-1831.

21. Kanygin A, et al. 2020. Rewiring photosynthesis: a photosystem I-hydrogenase chimera that makes H2 in vivo. Energy & Environmental Science 13: 2903-2914.

22. Treves H, et al. 2020. Multi-omics reveals mechanisms of total resistance to extreme illumination of a desert alga. Nature Plants 6(8): 1031-1043..

23. Klassen V, et al. 2020. Wastewater-borne microalga Chlamydomonas sp.: A robust chassis for efficient biomass and biomethane production applying low-N cultivation strategy. Bioresource Technology 315: 123825.

24. Canonico M, et al. 2020. Plasticity of Cyanobacterial Thylakoid Microdomains Under Variable Light Conditions. Frontiers in Plant Science 11:586543.

25. Baránková B, et al. 2020. Light absorption and scattering by high light-tolerant, fast-growing Chlorella vulgaris IPPAS C-1 cells. Algal Research 49: 2211-9264.

26. Zhang B, et al. 2020. The carbonate concentration mechanism of Pyropia yezoensis (Rhodophyta): Evidence from transcriptomics and biochemical data. BMC plant biology 20(1): 424-424.

27. Trivedi J, et al. 2020. Evaluating Cell Disruption Strategies for Aqueous Lipid Extraction from Oleaginous Scenedesmus Obliquus at High Solid Loadings. European Journal of Lipid Science and Technology 122(4): 1900328.

28. Sukaová K, et al. 2020. Biphasic optimization approach for maximization of lipid production by the microalga Chlorella pyrenoidosa. Folia Microbiologica 65: 901–908.

29. Pattanaika B, et al. 2020. Introduction of a green algal squalene synthase enhances squalene accumulation in a strain of Synechocystis sp. PCC 6803. Metabolic Engineering Communications 10: e00125.


参与评论

全部评论(0条)

相关产品推荐(★较多用户关注☆)
你可能还想看
  • 技术
  • 资讯
  • 百科
  • 应用
  • 在线微生物培养系统图
    这些系统通过精确监控和调节微生物生长环境,能够提高培养效率、减少人为误差、确保培养过程的可重复性。本文将深入探讨在线微生物培养系统的工作原理、构成要素及其应用前景,并为相关领域的科研人员和企业提供实用的参考信息。
    2025-10-15107阅读 微生物培养系统
  • 色谱在线监测系统特点
    一种用来实时监测润滑油润滑油的设备,被称为油色谱在线监测系统。油色谱在线监测系统能够帮助用户对机械设备的状态进行实时了解,对设备故障进行诊断以及对设备寿命进行预测。
    2025-10-21219阅读 油色谱在线监测系统
  • 查看更多
版权与免责声明

①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。

②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。

③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。

④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi

关于作者

北京易科泰生态技术有限公司成立于2002年,为国家高新技术企业,总部位于北京中关村翠湖云中心,致力于“生态、农业、健康”科学研究与监测/检测技术方案推广、研发与应用服务

更多>>ta的最新文章
一粒种子的 “元素密码”:FireFly LIBS 如何看透种质优劣?
叶绿素荧光成像技术应用——组培(愈伤组织)篇
易科泰助力西北沙生植物降雨适应性研究 揭示裸果木光合与抗氧化响应机制
关注 私信
热点文章
九圃生物赋能小麦高产科研!助力孙其信院士团队在小麦高产分子育种方面取得新进展!
基尔中国 超声波流量计的计量校准
文献“基于面积归一化法对饲料中黄霉素总残留量的研究”,使用迪马色谱柱
突破成像边界!近红外二区系统,让生命研究“深”入细节
基尔中国 如何选择防爆流量开关
哈工程中科院二区Ocean Engineering发表:基于3DOF全耦合模型的内置式波浪能装置,实现宽频高效捕获
蝶形高速调制VCSEL激光器:为何成为高速通信的明日之星?
基尔中国 音叉谐振式密度计代替传统差压密度计优缺点比较
极紫外光刻光源研发新进展—— 破局高转换效率
登刊Materials Today Bio!高分辨化学成像显微镜助力结肠靶向微丸实现 “金蝉脱壳” 式精准释药
近期话题
相关产品

在线留言

上传文档或图片,大小不超过10M
换一张?
取消