仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

技术中心

当前位置:仪器网>技术中心> 行业标准> 正文

光子桥接技术优化量子光子芯片

来源:魔技纳米科技有限公司 更新时间:2022-09-23 14:50:17 阅读量:435

       光子桥接技术优化量子光子芯片 。近期,牛津大学研究人员开发出了一种制造技术,这一技术能够在同个芯片中快速产生波导。该芯片具有精确控制的3D截面,还能够沿波导显示出不断变化的行为;而其波导则具有非常低的损耗,有望用于光子和/或量子芯片的设计。 

       光子桥接在光子晶体集成电路的基本元件中,有微米尺度的光波导。这些元件类似于传统电子集成电路中的半导体二极管。由于制作工艺的限制,以往的光波导仅限于二维正方形、椭圆形和圆形截面结构。目前的选择是有限地生产这些波导,以显示低损耗和精确的三维截面变化。 

具有不同截面的“球形相位诱导多核波导”(SPIM-WGs)可实现模式转换,它提供了任何形状的光学模式转换能力,只受限于衍射限制的制造激光焦点的大小,这项技术在光子和/或量子芯片设计方面显示出了希望。 

       上述研究是与伦敦帝国理工学院的科学家一起进行的,他们打造了一种称为“球形相位诱导多核波导”(SPIM-WGs)的技术。该方法将具有连续可变三维截面的光波导有效地制作在芯片上。基于自适应光学,科学家们使用这种方法产生可变截面,包括圆形、方形、环形和许多其他复杂形状。每个轴上的横截面控制精度可以降低到数百纳米。对于单个波导,截面形状沿波导本身变化。  

       研究人员们观察到,在精确的形貌变化过程中,波导表现出非常低的传输损耗,约为-0.14dB/cm,当通过芯片传输1cm时,光功率的损耗仅为3%。实验结果进一步表明,截面变化引起的额外传输损失几乎可以忽略不计。 

       传统的硅上硅方法需要大约一个月或更长时间来生产波导。而相比之下,SPIM-WGs则能够在几分钟内达成这一目的。 

       理论上,SPIM-WGs可以提供任意形状的光学模式转换能力,仅受限于衍射限制的激光聚焦尺寸。实验证明,SPIM-WGs可以很容易地在一系列光电芯片中实现高斯光模式和椭圆光模式之间的转换。其中Z重要的应用是pp-KTP波导和单模光纤之间的模式转换,用于桥接量子光源和量子芯片。 

       目前,量子光源中的pp-KTP波导必须直接连接到单模光纤上,这样会损失约25%-30%的光强。而如果采用SPIM-WGs制作的模式转换波导进行桥接,预计光强损耗可降低到10%以下。这将大大提高大多数量子芯片的效率。 

       此外,基于模式转换的功能,SPIM-WGs可以连接到单模光纤,耦合效率高达95%。这使得SPIM-WG器件可以很容易地与大多数现有的光子器件相结合。研究人员还发现,弯曲在90°的矩形截面波导甚至可以控制光的偏振,这为各种光子和量子应用提供了希望。 

参与评论

全部评论(0条)

相关产品推荐(★较多用户关注☆)
你可能还想看
  • 技术
  • 资讯
  • 百科
  • 应用
  • 光子能量计原理
    随着科技的进步,光子能量计在科研、工业以及医疗等多个领域的应用变得越来越广泛。本文将深入探讨光子能量计的工作原理、应用范围及其重要性,帮助读者更好地理解这一仪器的核心功能与技术特性。通过这篇文章,您将获得关于光子能量计的基础知识以及其在实际工作中如何发挥作用的详细信息。
    2025-10-23114阅读 能量计
  • 双光子共聚焦显微镜原理
    本文将深入探讨双光子共聚焦显微镜的工作原理、应用优势与发展前景,帮助读者全面理解这一前沿技术在各学科中的核心作用和潜力。
    2025-10-21276阅读 共聚焦显微镜
  • 3d双光子断层扫描成像
    通过利用双光子激发和三维成像技术,3D双光子断层扫描成像能够提供高分辨率、深层次的组织结构图像,为科学家和医生提供前所未有的观察视角。本文将详细介绍这一技术的基本原理、应用优势以及在生物医学中的前景。
    2025-10-22189阅读 断层扫描成像
  • 双光子荧光显微镜原理
    本文将深入探讨双光子荧光显微镜的工作原理、特点及其应用,为读者提供对这一前沿技术的全面了解,帮助更好地认识其在科学研究中的价值。
    2025-10-22221阅读 荧光显微镜
  • 双光子荧光显微镜结构
    它通过利用两束低能量的光子同时被分子吸收,从而激发荧光信号,相较于传统的单光子激发荧光显微镜,双光子显微镜能够实现更深的成像深度且对样本的损伤较小。在本文中,我们将深入探讨双光子荧光显微镜的基本结构原理、组成组件及其在科研中的应用。通过了解其设计与功能,能够更好地掌握这一技术的优势与局限性,进一步推动其在各类生物医学研究中的应用。
    2025-10-22256阅读 荧光显微镜
  • 查看更多
版权与免责声明

①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。

②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。

③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。

④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi

热点文章
一体化感知,智护室内微生态——一体式室内环境监测系统解析
gnss地表位移监测预警系统:毫米级预警!GNSS“科技哨兵”守护地表安全
灵动破局,精确溯源:移动应急自动环境监测站筑牢生态安全应急防线
立杆岸边多参数水质监测设备:守护水域生态的“智能哨兵”
GB 28007-2024发布!婴童家具安全“新国标”2026年实施,您的实验室准备好了吗?
智守并网安全 精测光伏生态——光伏电站并网式环境监测系统赋能光伏电站高效运行
地下型白蚁监测仪:让隐形虫害无处遁形
手持式电波雷达流速仪:非接触式科技重构水文监测新范式
智测风云,赋能光储:并网式光伏环境监测气象站的能效革新之路
简述恶臭污染物排放的行业标准
近期话题
相关产品

在线留言

上传文档或图片,大小不超过10M
换一张?
取消