资料库
光学相干断层扫描监测急性中风进展
本文由 北京心联光电科技有限公司 整理汇编
2022-05-12 14:05 338阅读次数
文档仅可预览首页内容,请下载后查看全文信息!
立即下载
华盛顿大学光学和生物医学工程领域的国际著名专家王瑞康教授在国际顶级期刊IEEE TRANSACTIONS ON MEDICAL IMAGING(IF:7.816)发表文章《Monitoring Acute Stroke Progression: Multi-Parametric OCT Imaging of Cortical Perfusion, Flow, and Tissue Scattering in a Mouse Model of Permanent Focal Ischemia》文中采用光学相干断层扫描成像的方法监测急性中风的脑部病理改变,这对脑部中风等神经血管疾病提供了一种新的研究方向和监测手段。接下来让我们看看这篇文献的内容吧。
更多资料
光学相干断层扫描监测急性中风进展
华盛顿大学光学和生物医学工程领域的国际著名专家王瑞康教授在国际顶级期刊IEEE TRANSACTIONS ON MEDICAL IMAGING(IF:7.816)发表文章《Monitoring Acute Stroke Progression: Multi-Parametric OCT Imaging of Cortical Perfusion, Flow, and Tissue Scattering in a Mouse Model of Permanent Focal Ischemia》文中采用光学相干断层扫描成像的方法监测急性中风的脑部病理改变,这对脑部中风等神经血管疾病提供了一种新的研究方向和监测手段。接下来让我们看看这篇文献的内容吧。[详细]
2022-05-12 14:05
应用文章
光学相干断层扫描的癌症成像:临床前进展和临床潜力
上一篇文章中我们重点介绍了新型OCTA影像学技术,在这篇文章中我们将通过国际顶尖期刊NATURE REVIEWS CANCER(影响因子:51.848)中的一篇经典综述来进一步了解光学相干断层扫描成像技术(OCT)吧!
简单的说OCT 技术以迈克尔逊干涉原理为核心,基于弱相干光信号探测,获取样品的背向反射和背向散射光信号,再通过横向扫描获得多个 A-scan信息,重建得到组织横断面图像;Z后再通过纵向扫描进而获得样品的三维立体图像。相比于传统的影像学技术, OCT 凭借其高时间分辨率、高空间分辨率的非接触、快速、无创的优点,可实现高分辨活体三维无标记成像。因此,在医学界,它成为了一种极具吸引力的前沿技术。
近十年来,OCT 技术得到了的高速发展与进步,在眼科学、生物医学、工业界等领域取得了令人瞩目的成就。这些进展大大推动了眼科,心脏病学和胃肠道癌筛查的商业化和临床应用。近年来OCTA技术与血管内OCT技术的发展,为临床前活体内癌症成像临床应用开发,提供了一系列令人兴奋的新功能,不仅可以实现高分辨组织内部结构成像,还可以探测和监测体内癌症的进展和反应的功能相关信息。
[详细]
2022-05-06 14:17
应用文章
光学相干断层扫描的癌症成像:临床前进展和临床潜力
我们可以相信OCT技术在科研以及临床诊断和治疗中的应用前景广阔,可以在多种学科,多种类型的研究中都能提供巨大的能量。目前,已经可以看到OCT技术在除眼科之外的临床应用上拥有巨大潜力。随着OCT技术的发展,OCT技术将来来提供肿瘤内微血管系统的高分辨率可视化。[详细]
2022-05-12 14:00
应用文章
具有皮摩尔灵敏度的对比增强型光学相干断层扫描
光学相干断层扫描(OCT)能以细胞尺度分辨率对几毫米的活体组织进行实时三维成像,但在功能生物学研究方面,仍缺乏可很好与组织区分开来的外源性造影剂从而导致应用受限。基于此,斯坦福大学研究人员Orly Liba等开发了一种功能性OCT成像方法,称为“MOZART”。该方法使用采用LGNRs(large gold nanorods)作为造影剂并结合特定算法进行光谱识别。LGNRs每粒子的光谱信号比传统GNR高110倍,使得能够从水中检测出单个LGNR,在活小鼠循环中的检出浓度可低达250 pM。该方法还能够自适应地补偿深度并处理伪像。总的来说,该方法能够在活体中实现高质量的非侵入性对比增强OCT成像。此外通过不同光谱的LGNR复用可以观察淋巴引流的离散模式,并识别单个淋巴管和淋巴管瓣膜的功能状态。研究成果以“Contrast-enhanced optical coherence tomography withpicomolar sensitivity for functional in vivo imaging”为题发表于Scientific Reports。[详细]
2022-05-23 14:30
应用文章
光学相干断层扫描通过深度学习快速识别浸润性脑肿瘤
脑癌患者的生存时间有限,不可避免会复发并随后死亡,手术是一线治疗方法。高级别脑癌患者的中位生存期约为14个月,但个体生存期存在差异。越来越多的证据表明,切除程度是与肿瘤延迟复发和延长生存期相关的Z重要的危险因素更彻底的脑癌切除可以延长生存期和延缓复发。然而,术中区分癌组织和非癌组织是具有挑战性的,特别是在过渡和浸润区。这在大脑语言区和运动区尤为重要。本研究测试了无标记、定量光学相干断层扫描(OCT)在人类脑组织中区分癌与非癌的可行性。从32例II至IV级脑癌患者和5例非癌性脑病理患者中获得新鲜的离体人脑组织。根据体积OCT成像数据,病理证实的脑肿瘤组织(无论是高级别还是低级别)在癌核心和浸润区的光学衰减值均明显低于非癌白质区,OCT对脑癌患者在5.5 mm 1的衰减阈值下具有较高的敏感性和特异性。
https://mp.weixin.qq.com/s/i2p556VVefSHLNC73Zvm8g[详细]
2024-09-10 23:19
其它
使用多焦点光学相干断层扫描实现皮肤组织细胞快速成像
光学相干断层扫描(OCT)是一种强大的工具,提供无创的组织学成像。然而,与其他光学显微镜工具一样,需要高数值孔径(N.A.)透镜来产生紧密聚焦,从而产生窄景深,这就需要动态聚焦并限制成像速度。为了克服这一限制,我们开发了一种产生多轴向焦点的超表面平台,通过提供多个焦平面来提高体积OCT成像速度。该平台对产生的轴向焦点的数量、位置和强度提供准确和灵活的控制。直径为8毫米的全玻璃超表面光学元件由熔融硅片制成,并应用于我们的扫描OCT系统中。在所有深度的恒定横向分辨率为1.1 μm,多焦点OCT将皮肤学成像的体积采集速度提高了三倍,同时仍然清晰地显示角质层、表皮细胞和真皮-表皮连接的特征,并提供形态学信息作为基底细胞癌的诊断标准。在稀疏的样品中,成像速度可以进一步提高,例如7倍的7焦光束。总之,这项工作证明了基于超表面的多焦点OCT用于快速虚拟活检的概念,进一步为开发具有高分辨率和紧凑体积的快速体积成像系统提供了见解。[详细]
2023-07-25 14:14
其它
使用多焦点光学相干断层扫描实现皮肤组织细胞快速成像
光学相干断层扫描(OCT)是一种强大的工具,提供无创的组织学成像。然而,与其他光学显微镜工具一样,需要高数值孔径(N.A.)透镜来产生紧密聚焦,从而产生窄景深,这就需要动态聚焦并限制成像速度。为了克服这一限制,我们开发了一种产生多轴向焦点的超表面平台,通过提供多个焦平面来提高体积OCT成像速度。该平台对产生的轴向焦点的数量、位置和强度提供准确和灵活的控制。直径为8毫米的全玻璃超表面光学元件由熔融硅片制成,并应用于我们的扫描OCT系统中。在所有深度的恒定横向分辨率为1.1 μm,多焦点OCT将皮肤学成像的体积采集速度提高了三倍,同时仍然清晰地显示角质层、表皮细胞和真皮-表皮连接的特征,并提供形态学信息作为基底细胞癌的诊断标准。在稀疏的样品中,成像速度可以进一步提高,例如7倍的7焦光束。总之,这项工作证明了基于超表面的多焦点OCT用于快速虚拟活检的概念,进一步为开发具有高分辨率和紧凑体积的快速体积成像系统提供了见解。[详细]
2024-09-28 04:03
应用文章
案例研究: 术中光学相干断层扫描辅助的儿科基因治疗
RPE65 基因提供制造一种对正常视力至关重要的蛋白质的指导。
RPE65 基因突变导致 RPE65 活性降低或消失,阻碍视觉循环,导致视力受损¹。[详细]
2024-09-24 17:24
应用文章
免费下载病例研究《术中OCT光学相干断层扫描辅助基因治疗》
基因增强疗法是一种眼部基因转移方法,用于治疗当存在遗传性疾病时,由于功能蛋白表现不足而导致的常染色体隐性或X连锁性视网膜营养不良。[详细]
2024-10-18 15:49
应用文章
小鼠脑部深层光学相干断层扫描血管成像:海马体深度微血管成像
海马体与大脑的记忆功能和导航功能相关,啮齿动物的海马体常被用来作为研究神经生理学的模型系统例如研究神经可塑性等。该部位的血管变化与脑部疾病密切相关,例如阿尔茨海默氏病,痴呆和癫痫病。小鼠海马体周围的血管成像可能有助于进一步阐明这些疾病的潜在机制。光学相干断层扫描血管造影(OCTA)是一种新兴技术,可以提供无标签的血流信息。由于海马体是小鼠大脑的深层结构,因此直接使用OCTA和其他显微成像方式对血管网络进行可视化一直是医学影像学的研究挑战之一。目前已有使用多光子显微镜对海马血管进行了成像,但是使用此技术时,必须用荧光探针标记。而在此研究中研究者Kwan Seob Park等人使用1.7μm扫描OCT系统对小鼠海马体结构进行了无标签和无创微血管成像。成像结果表明,具有一定穿透能力的OCTA系统可以可视化海马不同部位与大脑深部区域相对应的血流。[详细]
2022-05-11 11:18
应用文章
CellPress综述:光学显微技术和相干断层扫描技术在活体癌症研究中的应用
活体显微成像(IVM)和光学相干断层扫描(OCT)是两种强大的光学成像工具,能够在活体动物中,观察亚细胞水平的动态活动。结合标记和无标记技术的,IVM和OCT在临床前和临床癌症成像方面得到非常广泛的应用,包括肿瘤的解剖学、生理学、肿瘤内细胞迁移和肿瘤的分子学动力。这些应用对阐明癌症生物机制、研究肿瘤的复杂生理、细胞和分子行为起到了极大帮助。同时IVM和OCT技术也在不断发展进步以适用于更多领域。如非线性光学显微镜技术的发展使得能用无标签的IVM对癌症胞外基质进行成像。新的光学设计和算法推动了无标签的OCT技术的发展,使得OCT能够能精确的检测肿瘤边缘和脉管系统。同时荧光标签技术促使IVM可用于追踪肿瘤干细胞、观察肿瘤进展中肿瘤内遗传多样性、追踪治疗过程中各种免疫细胞的迁移。OCT造影剂提高了OCT的灵敏度,使其能够对肿瘤及其周围的生理、分子表达、细胞行为进行成像。此外在双模内窥镜中结合使用IVM和OCT,使得我们能够对一些腔内位置进行更有效更彻底的癌症筛查,如胃肠道和膀胱,本文意在阐明每种成像技术的优缺点,重点关注过去5年来IVM和OCT在活体癌症成像领域的重要进展、关键技术的发展[详细]
2022-05-10 10:54
应用文章
光学相干断层扫描血流成像(OCTA)技术用于引导外科手术实现高精度的肿瘤消融
近日国际顶尖杂志期刊THERANOSTICS(影响因子8.063)发表了一篇文章S次提出了使用光学相干断层扫描血流成像(OCTA)技术用于引导与外科手术激光相结合,实现高精度的肿瘤消融。[详细]
2022-05-11 11:17
应用文章
高纵深度光学相干层析扫描
高纵深度光学相干层析扫描[详细]
2024-09-26 03:28
报价单
Trends in Cancer 活体癌症中光学显微镜和相干断层扫描的应用
活体显微镜(IVM)和光学相干断层扫描(OCT)是两种功能强大的光学成像工具,可以以亚细胞分辨率可视化活体动态生物活动。标记和无标记技术的Z新进展使IVM和OCT能够用于广泛的临床前和临床癌症成像,为肿瘤复杂的生理、细胞和分子行为提供深刻的见解。临床前IVM和OCT已经阐明了癌症生物学的许多其他难以理解的方面,而IVM和OCT的临床应用正在彻底改变癌症的诊断和治疗。作者回顾了活体肿瘤成像的IVM和OCT领域的重要进展,重点介绍了关键技术的发展及其在基础癌症生物学研究和临床肿瘤学研究中的新兴应用。
https://mp.weixin.qq.com/s/eJy4BMRciWMelTUeF66csQ[详细]
2024-09-10 22:55
其它
浅谈重金属水污染现状及监测进展
浅谈重金属水污染现状及监测进展[详细]
2024-09-15 04:11
期刊论文
油料品质和设备状态监测Zxin进展
油料品质和设备状态监测Zxin进展[详细]
2024-09-11 18:02
实验操作
Quant Imaging Med Surg:光学相干断层扫描成像人体皮肤自体移植物
皮肤自体移植作为一种治疗策略广泛应用于临床,被纳入包括烧伤、软组织创伤和癌症在内的多种疾病的治疗策略中,但仍有10-30%的失败率。本文S次展示了OCT和OCTA在中厚皮片手术后几天和几周内,成像并监测人皮肤自体移植手术后的健康及整合情况的能力。S次证明了无创OCT/ OCTA成像技术在该临床应用中的适用性,对未来的外科手术和临床结果有极大改善作用。[详细]
2024-09-11 18:18
应用文章
热分析进展
热分析进展[详细]
2024-09-11 17:49
应用文章
使用光学相干血管造影术准确地早期预测肿瘤对PDT的反应
肿瘤治疗过程中,对治疗反应的预测可能对治疗选择和优化其递送参数中起到关键作用。来自俄罗斯和加拿大的研究人员M. A. sirotkina等将光学相干血管造影术(OCA)作为成像方法,使用小鼠耳移植肿瘤模型(CT-26)进行了临床前试验,观察正常和病理灌注血管,并监测了血管经靶向光动力疗法(PDT)后的治疗反应。还提出了一种稳定简单的以微血管作为度量的方法,即PDT后t = 24h,肿瘤和肿瘤周围区域的灌注血管密度(PVD),用以判断PDT的成功。同时经组织学验证,进一步证实了OCA微血管度量的出色早期预测能力,以及肿瘤周围微血管在决定长期PDT反应中的关键作用。[详细]
2024-09-28 17:44
应用文章
英干细胞ZL中风初试见效 将申请临床试验
英干细胞ZL中风初试见效 将申请临床试验[详细]
2013-06-01 00:00
产品样册
Copyright 2004-2025 yiqi.com All Rights Reserved , 未经书面授权 , 页面内容不得以任何形式进行复制
参与评论
登录后参与评论