为您推荐:
仪器网

镓,Gallium,金属镓

网站地图

(jiā)英文为Gallium,元素符号Ga。元素周期表中原子序数为31,相对原子质量为69.723,属第4周期第ⅢA族的金属元素。固体镓为蓝灰色,液体镓为银白色。在低温时硬而脆,而一超过室温就熔融,溶于酸和碱中,微溶于汞,腐蚀性很强。在干燥的空气中比较稳定,表面会生成氧化物薄膜阻止继续氧化,在潮湿空气中便失去光泽。的凝固点很低,由液态转化为固态时,膨胀率为3.1%,宜存放于塑料容器中。在地壳中的含量为0.0015%,不以纯金属状态存在,通常是作为从铝土矿中提取铝或从锌矿石中提取锌时的副产物得到的。由于熔点很低、沸点很高、良好的超导性、延展性以及优良的热缩冷胀性能而被广泛应用到半导体、太阳能、合金、化工等领域。

发现简史

镓是化学史上第一个先从理论预言,后在自然界中被发现验证的化学元素。1871年,门捷列夫发现元素周期表中铝元素下面有个间隙尚未被占据,他预测这种未知元素的原子量大约是68,密度为5.9 g/cm³,性质与铝相似,他的这一预测被法国化学家布瓦邦德朗(Paul Emile Lecoq de Boisbaudran)证实了。布瓦邦德朗利用光谱分析发现在铝和铟之间缺少一个元素,并从1865年开始用分光镜寻找这个元素,他分析了许多矿物,但都没有成功。直到1875年9月,他在闪锌矿矿石(ZnS)中提取锌的原子光谱上观察到了一个新的紫色线,于是断定这是一种新元素,并于同一年通过电解镓的氢氧化物得到了这种新的金属,他将此物质命名为gallium,元素符号定为Ga。

发展简史

20世纪60年代初,金属镓开始引起各国的注意。砷化镓作为一种新型优质半导体的研究热兴起,但砷化镓的大规模生产则始于20世纪80年代。随着砷化镓化合物用作半导体材料的优异性能不断被发现,砷化镓也被广泛应用到微波器件、激光器和发光二极管等产品中。蓝色LED于20世纪90年代初研究成功,白色LED的开发也随之展开,一场"照明革命"由此开始。镓的消费量剧增,再加上商业炒作,镓的价格大幅上涨。经过近20年的发展,白色LED照明技术已经取得巨大成就。与传统的照明技术相比,LED照明技术具有高效节能、超长寿命、绿色环保、光效率高等优势而受到世界各国政府的支持。目前,对砷化镓的研究和生产已大部分转向了LED产业。


我国是世界上镓主产国之一,据不完全统计,2012年我国镓产量为270吨,产能约330吨,约占全球产量的80%。当前我国镓产能严重过剩,2013年我国镓的产能约400-450吨,2014年在500吨左右。我国也是镓主要消费国和进口国,2010年全球镓消费量约为280-300吨,而我国镓消费量约为100吨,约占总消费量的三分之一,并且我国镓的消费量正在以每年20%-30%的速度增长。目前,我国金属镓的消费领域包括半导体和光电材料、太阳能电池、合金、医疗器械、磁性材料等,其中半导体行业已成为镓最大的消费领域,约占总消费量的80%。

随着镓行业的快速发展,尤其是半导体和太阳能电池行业,以及我国政府对LED行业发展规划的推动,我国镓的消费量还将保持大幅增长态势。此外,因为我国国内金属镓回收能力较小,所以对金属镓的需求全部依靠原生镓支撑,这也将促进我国市场对原生镓需求量的大幅增长。

含量分布

由于镓在地壳中的浓度很低.在地壳中占重量的0.0015%。它的分布很广泛,但不以纯金属状态存在,而以硫镓铜矿(CuGaS2)形式存在,不过很稀少,经济上也不重要。镓是闪锌矿,黄铁矿,矾土,锗石工业处理过程中的副产品。

自然界中常以微量分散于铝土矿、闪锌矿等矿石中。由铝土矿中提取制得。在高温灼烧锌矿时,镓就以化合物的形式挥发出来,在烟道里凝结,镓常与铟和铊共生。经电解、洗涤可以制得粗镓,再经提炼可得高纯度镓。

时下世界90%以上的原生镓都是在生产氧化铝过程中提取的,是对矿产资源的一种综合利用,通过提取金属镓增加了矿产资源的附加值,提高氧化铝的品质降低了废弃物“赤泥”的污染,因此非常符合当前低碳经济以最小的自然资源代价获取最大利用价值的原则。镓在其它金属矿床中的含量极低,经过一定富集后也只能达到几百克/吨,因而镓的提取非常困难,另一方面,由于伴生关系,镓的产量很难由于镓价格上涨而被大幅拉动,因此,原生镓的年产量极少,全球年产量不足300吨,是原生铟产量的一半,如果这种状况不能得到改善,未来20-30年这些金属镓将会出现严重短缺。

最新研发

2014年9月23日,美国北卡罗来纳州一个科研团队日前研发出一种可进行自我修复的变形液态金属,距离打造“终结者”变形机器人的目标更进一步。

科学家们使用镓和铟合金合成液态金属,形成一种固溶合金,在室温下就可以成为液态,表面张力为每米500毫牛顿。这意味着,在不受外力情况下,当这种合金被放在平坦桌面上时会保持一个几乎完美的圆球不变。当通过少量电流刺激后,球体表面张力会降低,金属会在桌面上伸展。这一过程是可逆的:如果电荷从负转正,液态金属就会重新成为球状。更改电压大小还可以调整金属表面张力和金属块粘度,从而令其变为不同结构。

北卡罗来纳州立大学副教授迈克尔·迪基(Michael Dickey)说:“只需要不到一伏特的电压就可改变金属表面张力,这种改变是相当了不起的。我们可以利用这种技术控制液态金属的活动,从而改变天线形状、连接或断开电路等。”

此外,这项研究还可以用于帮助修复人类切断的神经,以避免长期残疾。研究人员宣称,该突破有助于建造更好的电路、自我修复式结构,甚至有一天可用来制造《终结者》中的T-1000机器人。

最新镓文章
镓的应用
镓的应用

目前,我国金属镓的消费领域包括半导体和光电材料、太阳能电池、合金、医疗器械、磁性材料等,其中半导体行业已成为镓最大的消费领域,约占总消费量的80%。随着镓下游应... [查看全部]

镓的理化性质
镓的理化性质
推荐访问:

镓的理化性质

物理性质

淡蓝色金属,在29.76℃时变为银白色液体。液态镓很容易过冷即冷却至0℃而不固化。微溶于汞,形成镓汞齐。镓能浸润玻璃,故不宜使用玻璃容器存放。


受热至熔点时变为液体,再冷却至0℃而不固化,由液体转变为固体时,其体积约增大3.2%。硬度1.5~2.5。常温时镓在干燥空气中稳定。

很容易水解,尤其是在生理学的pH值下。纯镓是银白色的,可以浸润玻璃,沸点很高,在大约1500℃时有很低的蒸汽压。

熔点29.76℃ 

沸点2403℃

密度5.904克/立方厘米

化学性质

外围电子排布4s24p1,位于第四周期第ⅢA族。

在潮湿空气中氧化,加热至500℃时着火。室温时跟水反应缓慢,跟沸水反应剧烈生成氢氧化镓放出氢气。加热时溶于无机酸或苛性碱溶液。能跟卤素、硫、磷、砷、锑等反应。

镓在干燥空气中较稳定并生成氧化物薄膜阻止继续氧化,在潮湿空气中失去光泽。与碱反应放出氢气,生成镓酸盐。能被冷浓盐酸浸蚀,对热硝酸显钝性,高温时能与多数非金属反应;溶于酸和碱中,镓在化学反应中存在+1、+2和+3化合价,其中+3为其主要化合价。镓的活动性与锌相似,却比铝低。镓是两性金属,既能溶于酸(产生Ga3+)也能溶于碱。镓在常温下,表面产生致密的氧化膜阻止进一步氧化。加热时和卤素、硫迅速反应,和硫的反应按计量比不同产生不同的硫化物。

生理学:还没有发现镓有生理微量元素的功能。和铝一样,它只通过肠道很微量的吸收。可以利用三氧化二镓在老鼠、家鼠、狗肺部沉积的数据。

皮下注射镓后,镓在组织中的分布模式是定时得,这和静脉注射很相似。镓在组织中的分布模式取决于摄入镓的剂量。主要的排泄渠道是尿液。癌症患者对镓的清理分为两阶段,半衰期分别为87分钟和24.5小时。

镓的毒性是和生物的种类相关的。在服用浓度高于750mg/kg时才会表现出对人肾脏的毒性。对老鼠的实验表明,镓会导致镓,钙和磷酸盐在肾中的沉积,这会堵塞肾腔

... 查看全文
与镓的理化性质相关文章
镓的应用领域
镓的应用
推荐访问:

目前,我国金属镓的消费领域包括半导体和光电材料、太阳能电池、合金、医疗器械、磁性材料等,其中半导体行业已成为镓最大的消费领域,约占总消费量的80%。随着镓下游应用行业的快速发展,尤其是半导体行业和太阳能电池行业,未来金属镓需求也将稳步增长。

半导体材料

镓是一种低熔点高沸点的稀散金属,有“电子工业脊梁”的美誉。镓的化合物是优质的半导体材料,被广泛应用到光电子工业和微波通信工业,用于制造微波通讯与微波集成、红外光学与红外探测器件、集成电路、发光二极管等。例如我们在电脑上看到的红光和绿光就是由磷化镓二极管发出的。目前,半导体行业金属镓消费量约占总消费量的80%—85%。


太阳能电池

镓也被应用到太阳能电池的制造中,如砷化镓三五族太阳能电池,该电池具有良好的耐热、耐辐射等特性,其光电转换率非常高。最初因为生产、使用成本都非常高,常常被应用在航天和军工领域。但近几年随着科技的发展,砷化镓太阳能电池的生产和使用成本都在降低,搭配上聚光光学组件从而使其应用领域开始扩大,并且正在以较快的速度普及。CIGS薄膜太阳能电池是第三代太阳能电池,具有生产、安装、使用成本低,光电转换率高的优势,因而在众多太阳能电池产品中成为发展最快的一族。虽然世界上已投产或在建的CIGS工厂已超过40多家,但金属镓在CIGS的原材料中所占比重仅为5%—10%。随着CIGS生产规模的扩大,该行业对金属镓的需求会有明显增长。


合金领域

镓与铟、ta、锡、铋、锌等可在3℃—65℃之间组成一系列低熔合金,用于温度测控、仪表中的代汞物、珠定业作中支撑物、金属涂层、电子工业及核工业的冷却回路。例如,含25%铟的镓合金为低熔点合金,在16℃时便熔化,可用于自动灭火装置中。镓与铜、镍、锡、金等可组成冷焊剂,适于难焊接的异型薄壁,金属间及其与陶瓷间的冷焊接与空洞堵塞。

医学应用

镓可用于医疗诊断,例如使用枸橼酸镓(67Ga)来诊断肺癌和肝癌等。镓

... 查看全文
与镓的应用领域相关文章
镓的生产工艺
镓的生产工艺
推荐访问:

镓主要是作为从铝土矿中提取铝或从锌矿石中提取锌时的副产物得到的,也有少量镓来自于煤中伴生元素镓的回收。目前世界上90%以上的原生镓都是从生产氧化铝的种分母液中提取的。

从炼铝副产物中提取镓

汞齐电解法:该方法以汞为阴极,电解含镓溶液获得镓汞齐,然后从镓汞齐中回收镓。含镓溶液可以是氧化铝生产的含镓循环铝酸钠碱液,也可以是铅电解或锌电解的含镓酸性溶液。1955年匈牙利首先使用该方法从氧化铝生产的循环铝酸钠溶液中提取镓。20世纪60年代,意大利、法国及苏联等国都相继采用这种方法生产镓,并改进了这项生产工艺。我国于70年代初开始使用这种方法从碱石灰烧结法生产氧化铝的循环铝酸钠碱液中提取镓,也对该技术进行了改进。汞齐法的优点是工艺、设备均比较简单,投资低,在回收纯度较高的金属镓的同时还可以回收钒。但由于该方法使用有剧毒的汞,所以现在已经被大多数国家禁用。

石灰乳法:该方法由美国铝业公司(Alcoa)于1952年研究成功,我国和苏联于1957年用于工业生产。该方法的原理是用石灰乳处理氧化铝生产的循环铝酸钠溶液,使镓与铝分离,然后回收富集的镓。这种方法的优点是能从镓浓度低的循环铝酸钠溶液中回收镓,缺点是使循环碱液中的NaOH转化为NaHCO3及Na2CO3,需要使用大量石灰苛化后才能返回氧化铝生产流程。

溶剂萃取法:该法所用的萃取剂昂贵且萃取剂长期与强碱性铝酸钠溶液接触,溶解损失较大,溶解于种分母液中的萃取剂对后序工艺中的电解也有不利影响。

离子交换法:该方法从拜耳母液中回收金属镓,无需往铝酸钠溶液中加任何试剂,不会影响氧化铝生产工艺,且其工艺流程短,周期作业,易于实现自动化操作,成本较低,是目前从氧化铝生产中回收镓的最经济的方法,并且已经实现了工业化生产。

从炼锌副产品中提取镓

还原焙烧磁选工艺:该法利用镓的亲铁特性,通过强化浸锌渣的还原过程,使镓定向富集于金属铁中,然后采用磁选的方法从焙烧渣中分

... 查看全文
与镓的生产工艺相关文章
砷化镓
砷化镓
推荐访问:

砷化镓(gallium arsenide),化学式 GaAs。黑灰色固体,熔点1238℃。它在600℃以下,能在空气中稳定存在,并且不被非氧化性的酸侵蚀。

砷化镓是一种重要的半导体材料。属Ⅲ-Ⅴ族化合物半导体。属闪锌矿型晶格结构,晶格常数5.65×10-10m,熔点1237℃,禁带宽度1.4电子伏。砷化镓于1964年进入实用阶段。砷化镓可以制成电阻率比硅、锗高3个数量级以上的半绝缘高阻材料,用来制作集成电路衬底、红外探测器、γ光子探测器等。由于其电子迁移率比硅大5~6倍,故在制作微波器件和高速数字电路方面得到重要应用。用砷化镓制成的半导体器件具有高频、高温、低温性能好、噪声小、抗辐射能力强等优点。此外,还可以用于制作转移器件──体效应器件。砷化镓是半导体材料中,兼具多方面优点的材料,但用它制作的晶体三极管的放大倍数小,导热性差,不适宜制作大功率器件。虽然砷化镓具有优越的性能,但由于它在高温下分解,故要生产理想化学配比的高纯的单晶材料,技术上要求比较高。

基本信息

中文名称:砷化镓

英文名称:gallanylidynearsane

英文别名:EINECS 215-114-8;Gallium monoarsenide;arsanylidynegallium;GALLIUM ARSENIDE;

CAS号:1303-00-0

分子式:AsGa

分子量:144.67600

安全信息

符号:GHS08

信号词:危险

危害声明:H350; H372

警示性声明:P201; P308 + P313

包装等级:II

危险类别:6.1

海关编码:2853009022

危险品运输编码:UN 1557 6.1/PG 2

WGK Germany:3

危险类别码:R23/25

安全说明:S20/21; S28; S45; S60; S61

RTECS号:LW8800000

危险品标志:T; N

主要特性

规 格     &nbs

... 查看全文
与砷化镓相关文章
镓
镓文章排行榜
重点推荐
友情链接: