为您推荐:
仪器网

锿_Einsteinium_锿元素

网站地图

(ai),英文名是Einsteinium,是一种人工合成元素,符号为Es,原子序为99。锿是第7个超铀元素,属于锕系元素。1952年12月由加州大学伯克利分校物理学家吉奥索等人首次发现。

其最常见的同位素为锿-253(半衰期为20.47天),是通过锎-253的衰变而人工制造的,每年在高能核反应炉中的产量约为1毫克。合成之后,锿-253要从其他锕系元素及其衰变产物中分离出来,这是个复杂的过程。其他的锿同位素则在各个实验室中以较轻元素的离子撞击锕系元素而合成,但产量少得多。锿除了用于合成新的元素,主要用于发射X射线。锿曾在1955年用于首次合成钔元素,并一共合成了17颗钔原子。

锿是一种柔软的银白色金属,具顺磁性。其化学属性符合典型的重锕系元素,容易形成+3氧化态,并特别在固体中也可以形成+2态。锿-253的高放射性会使它明显地发光,并会迅速破坏其晶体金属结构,每克释放大约1000瓦的热量。由于锿-253每天都损失3%的质量,并依次衰变为锫和锎,因此对锿的研究十分困难。锿-252是存留时间最长的锿同位素(半衰期为471.7天),可以用于研究锿的物理特性,但生产锿-252是极为困难的,每次的产量也极少。锿是最后一种曾在宏观尺度下以纯元素形态被研究过的元素,所用的同位素是常见但半衰期短的锿-253。和其他的人工合成超铀元素一样,锿是极具放射性的,如果进食了会对健康造成损害。

锿的发现

在1950-1951年间,国外科学杂志中就出现报道,发现了99号元素。文章的作者叙述这种元素是用碳原子核照射镎获得的,并分别命名为 anythenium,这是为纪念希腊的首都雅典,元素符号是An。但是,它没有得到更多的证实和承认。

1952年11月1日,美国在太平洋中的安尼维托克岛(Eniwetok)上空试验爆炸了一颗氢弹,在从爆炸地点仔细地收集了几百公斤土壤中发现99号元素的同位素。在1955年8月,在瑞士日内瓦召开的和平利用原子能国际科学技术会议中,根据人工合成这个新元素者们的建议,将99号元素命名为 einsteninium,以纪念20世纪中在原子和原子核科学中作出卓越贡献的著名物理学家爱因斯坦。99号元素符号定为Es,在1957年国际纯粹和应用化学联合会的无机化学命名委员会在巴黎集会时改为Es。命名是在两位物理学家ES,CS逝世之前提出的,但在其逝世后才被公布。

锿在1952年12月由阿伯特·吉奥索等人于伯克利加州大学连同阿贡国家实验室和洛斯阿拉莫斯国家实验室合作发现。含有锿的样本采自“常春藤麦克”核试验的辐射落尘。该核试验于1952年11月1日在太平洋埃内韦塔克环礁上进行,是首次成功引爆的氢弹。对爆炸落尘的初步检验发现了一种新的钚同位素(24494Pu),而这只能通过铀-238吸收6颗中子,再进行两次β衰变才会形成。

当时一般认为,重原子核多次吸收中子是一件较罕见的现象,但24494Pu的形成意味着铀原子核可能会捕获更多的中子,从而产生比锎更重的元素。

飞机搭载滤纸飞过爆炸残余的云,滤纸再交由吉奥索等人进行分析(24494Pu也是用同一种方法发现的)。在核试验进行地点埃内韦塔克环礁处受污染的珊瑚礁也被送到美国进行处理及分析,从中又提取了更多放射性物质。疑似新元素的分离是在微酸性(pH≈ 3.5)的柠檬酸/铵缓冲溶液中利用离子交换法在高温下进行的。最后得出的锿元素只有不到200个原子。不过,通过发现Es的特征性α衰变能量(6.6 MeV),还是能够探测到锿的存在。该同位素是在铀-238原子核捕获了15颗中子,再经过7次β衰变后形成的,半衰期为20.5天。之所以能够有这样多次的中子捕获,是因为核爆时所产生的高中子通量,使新产生的同位素能够在衰变为较轻的元素之前吸收大量的中子。中子捕获最初只会提高该核素的质量数(中子数加质子数),而不会提高其原子序(质子数);之后的β衰变再依序增加原子序:

某些U更能够另外再吸收两颗中子(一共17颗),形成Es,以及Fm。镄(Fm)是在本次核试验中发现的另一种新元素。由于正值冷战时期,因此这些新元素的发现被美国军方列为机密,直到1955年才被公布。这样的快速多次中子捕获使R-过程有了所需的实验验证。R-过程是一种多次中子捕获的过程,能够解释某些重元素(镍以上元素)是如何在超新星爆炸中合成的,这是宇宙中许多稳定元素的来源。

同时,位于伯克利及阿贡的实验室利用氮-14和铀-238之间的核反应以及对钚和锎进行强烈的中子辐射,也产生了锿(和镄)的一些同位素:

研究结果在1954年发布。报告中附有声明,注明此前已有过对这些元素进行的研究。伯克利的研究团队也发布了有关锿和镄化学属性的研究结果。有关“常春藤麦克”核弹的研究在1955年解密。

与美国团队竞争的,有位于瑞典斯德哥尔摩的诺贝尔物理研究所。1953年末至1954年初,该团队以氧原子核撞击铀原子核,成功合成了较轻的一些镄同位素,如Fm。这些结果也在1954年发布。但是,由于发布日期较早,所以人们一般还是承认伯克利团队最先发现锿元素。该团队因此拥有对该元素的命名权。他们决定将第99号元素命名为Einsteinium,以纪念逝世不久的阿尔伯特·爱因斯坦(Albert Einstein,1955年4月18日逝);并将第100号元素命名为Fermium,以纪念另一位逝世不久的物理学家恩里科·费米(Enrico Fermi,1954年11月28日逝)。1955年8月8日至20日于第一届日内瓦原子会议(Geneva Atomic Conference)上,阿伯特·吉奥索首次宣布发现这些新元素。锿的最初符号为“E”,后改为“Es”。


最新锿文章
锿的理化性质
锿的理化性质

物理特性锿是一种银白色的放射性金属。在元素周期表中,锿位于锎之右,镄之左,钬之下。其物理及化学特性与钬有许多共通之处。其密度为8.84 g/cm,这比锎的密度低... [查看全部]

锿的应用领域
锿的制备和应用
推荐访问:

锿的应用

锿除了在基础科学研究中用于制造更高的超铀元素及超锕系元素之外,暂无其他应用。

1955年,劳伦斯伯克利国家实验室用回旋加速器对约10个Es原子进行辐射,从而制造出钔。所用的反应Es(α,n)Md产生了17个钔原子(原子序为101)。

稀有的锿-254同位素常被用于制造超重元素,因为它质量高,半衰期较长(270天),每次可取得的量也很高(数微克)。故此,在1985年,位于美国加州伯克利的superHILAC直线加速器使用了锿-254来合成Uue(119号元素)。他们以钙-48离子撞击锿-254目标体,但没有探测到任何Uue原子。这为反应截面设下了300纳靶恩的上限。

锿-254曾用于校准勘测者5号月球登陆器上的化学分析光谱仪(见α-散射表面分析仪)。由于该同位素的质量很高,因此月表上轻元素与锿-254同位素在分析仪上的信号重叠会大大减少。

合成与提取

锿是在核反应堆中通过对锕系元素进行中子撞击而产生的。锿元素的主要来源是位于美国田纳西州橡树岭国家实验室的85 MW高通率同位素反应炉(HFIR),以及位于俄罗斯季米特洛夫格勒核反应器研究所(NIIAR)的SM-2环流反应器。这两个反应器都是专门用于制造超锔元素的(Z > 96)。两座设施的功率和通量相约,所以两者对超锔元素的生产量应该是相约的,但文献较少报道NIIAR所生产的超锔元素。该实验室通过对锔进行辐射,一般每次可生产数十克(1×10 g)锎、数毫克(1×10 g)锫和锿以及数皮克(1×10 g)镄。

HFIR在1961年首次制成微量的Es,样本大约重10纳克(1×10 g)。研究人员使用了一种特殊的磁秤来估计样本的重量。之后的单次产量增加到1967年至1970年的0.48毫克,然后到1971年至1973年的3.2毫克,再到1974年至1978年的每年3毫克产量。这些数值指的是刚刚完成辐射时的锿元素总量,而接着的分离过程会将纯

... 查看全文
与锿的应用领域相关文章
锿的理化性质
锿的理化性质
推荐访问:

物理特性

锿是一种银白色的放射性金属。在元素周期表中,锿位于锎之右,镄之左,钬之下。其物理及化学特性与钬有许多共通之处。其密度为8.84 g/cm,这比锎的密度低(15.1 g/cm),但与钬的密度相约(8.79 g/cm)。锿的熔点(860 °C)比锎(900 °C)、镄(1527 °C)及钬(1461 °C)的熔点低。锿是一种柔软的金属,其体积模量只有15 GPa,是非碱金属中该数值最低的元素之一。

与更轻的锕系元素锎、锫、锔及镅不同的是,锿不呈双六方晶体结构,而是呈面心立方结构。其空间群为Fm3m,点阵常数为a = 575 pm。但是有研究称,锿能够在室温下形成六方晶体,a = 398 pm,c = 650 pm,但在加热到300 °C之后便转变为面心立方结构。

锿的放射性非常强,使其自身的晶体结构迅速受辐射破坏;每克Es会通过辐射释放1000瓦的能量,足以产生肉眼可见的亮光。这也可能是锿拥有低密度、低熔点的原因。由于可用样本稀少,所以锿的熔点是通过观察在电子显微镜下对锿进行加热而推导出的。少量样本中的表面效应会降低熔点值。

锿的化合价为二,而且具高挥发性。为了减少辐射对锿自身的破坏,大部分对固体锿及其化合物的测量都在热退火之后马上进行。某些锿化合物是在还原性气体中研究的,如H2O+HCl用于研究EsOCl,这样化合物在分解的同时,也会重新形成。

除了辐射导致的自我破坏以外,锿的稀少和迅速衰变也对研究造成了困难。最常见的同位素Es每年只生产一到两次,每次份量不超过1毫克。每1天有3.3%的锿转变为锫,再转变为锎:

因此大部分被研究的锿样本都受到了其他物质的污染,而其本身的属性则是通过长期积累数据推导而得。其他避过污染问题的实验方法包括用可调谐激光选择性地只激发锿离子,这种方法被用于研究锿的发光属性。

对锿金属、其氧化物及氟化物磁性的研究指出,这三种物质从在液态氢中到室温中均显示出居

... 查看全文
与锿的理化性质相关文章
锿
锿文章排行榜
重点推荐
友情链接: