仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

在线 TOC 分析仪和传感器的比较

Sievers分析仪/威立雅 2019-09-02 11:12:23 503  浏览
  •        为了尽可能地降低使工艺和法规风险,选择Z适合其用途的总有机碳(TOC) 测量装置至关重要。美国 FDA 在 法 规 21CFR 211.194 中为制药行业指出,“所有使用的测试方法的适用性应在实际的使用条件下进行验证。” 在要求TOC分析仪的应用中,如果使用TOC传感器(图1),会导致更大的产品和法规风险 , 更 多超出规范 (Out-of-specification,OOS)结果的产品成本,以及相应的产品召回。

    图 1. TOC 传感器与 TOC 分析仪示例

    表1. TOC分析仪和传感器的一般特征

           相反地,当使用传感器更合适时使用了TOC分析仪可导致多余的资金消耗和维护费用。当确定TOC分析仪或传感器的选择时,表1对于分析装置的一般特性及其常见用途很有帮助。

    评估用途和准确度 

           所有TOC传感器的准确度都低于TOC分析仪。如果TOC装 置准备用于法规报告、管理重要的工艺控制变量、实时控 制参数放行或其他影响质量的产品属性,准确度非常重 要,使用TOC分析仪较合适。另一方面,如果准备用于一 般的TOC监控而不是用于关键的质量决定,则其他特性可 能比准确度更重要,使用TOC传感器较合适。 

           传感器一般用于监控工艺,而分析仪更适合管理工艺。传感器提供的数据仅供参考,分析仪提供的数据用于进行关 键的质量决定。TOC分析仪和传感器都具有重要的作用, 但在当前的超纯水(UPW)应用中其用途和作用不同(表 2)。

    TOC技术

           水中的 TOC 测量涉及测量初始CO2(无机碳,IC),将 所有有机物完全氧化为 CO2,然后测量其氧化后的 CO2浓度(总碳,TC)。TC – IC = TOC。 

           某些TOC传感器只是部分地将 有机物氧化为CO2,这也解释了 其对UV光难于氧化的化合物, 诸如甲醇和尿素,回收率低。其 他TOC分析仪和传感器将有机 物完全氧化为CO2。TOC传感器 都通过电导率池直接测量CO2(直接电导率,DC方法),会 产生假正及假负的TOC结果。与 之对比,TOC分析仪将CO2通过 选 择 性 膜 扩 散 到 去 离 子 (Deionized,DI)水中,然后使 用膜电导 (Membrane-Eonductometric, MC)法在电导池测量电离的CO2

    图2显示水中不同有机物的回收率表现,显示出传感器和分析仪的功能不同。

    在线TOC传感器和分析仪 

           TOC传感器比分析仪更小、便携、快速而且成本更低。Sievers 的CheckPoint TOC传感器对这些特点提供新一代的增强,而且是提供电池操作的第 一台也是唯 一的TOC测量装置。 图2显示分析仪和传感器之间的TOC性能差别。该图总结了不同 类别的有机物在三个TOC分析传感器 — Anatel 643、Thornton  5000、CheckPoint以及两台TOC分析仪 — Sievers* 500和900 上的响应的研究结果。

    表2. 预期用途 — TOC分析仪和传感器

           所有传感器对含氯、硫和氮的有机物显示虚假的高回收 率,而对有机酸显示虚假的低回收率。Thornton 5000只 部分氧化有机物并报告较低的甲醇回收率结果。此外,该传感器对于难于氧化的尿素显示不同的回收率,该化合物 在半导体加工过程中非常重要。这些传感器还对痕量的非有机离子敏感,因此对标准品和系统适用性测试造成困难。

           使用膜电导测量方法的Sievers 900和500系列分析仪对所有测试化合物报告接近100%的回收率。 

    结论 

    • TOC分析仪和传感器都具有重要的作用,但在当前的 UPW应用中其作用不同(表2)。 

    • 选择TOC装置时应着重考虑准确度和用途。 

    • 使用MC方法的TOC分析仪比传感器更准确,应当应用于涉及法规报告、测量产品质量、实时放行、管理工 艺控制限值和进行系统验证的关键质量决策。 

    • 使用DC方法的TOC传感器,无论制造厂商,与生俱来的对于许多类别的有机化合物测定不准确,不应依靠它们进行法规报告或对质量很关键的工艺。其合适用途是一般趋势、故障排查和一般诊断。

参与评论

全部评论(0条)

热门问答

在线 TOC 分析仪和传感器的比较

       为了尽可能地降低使工艺和法规风险,选择Z适合其用途的总有机碳(TOC) 测量装置至关重要。美国 FDA 在 法 规 21CFR 211.194 中为制药行业指出,“所有使用的测试方法的适用性应在实际的使用条件下进行验证。” 在要求TOC分析仪的应用中,如果使用TOC传感器(图1),会导致更大的产品和法规风险 , 更 多超出规范 (Out-of-specification,OOS)结果的产品成本,以及相应的产品召回。

图 1. TOC 传感器与 TOC 分析仪示例

表1. TOC分析仪和传感器的一般特征

       相反地,当使用传感器更合适时使用了TOC分析仪可导致多余的资金消耗和维护费用。当确定TOC分析仪或传感器的选择时,表1对于分析装置的一般特性及其常见用途很有帮助。

评估用途和准确度 

       所有TOC传感器的准确度都低于TOC分析仪。如果TOC装 置准备用于法规报告、管理重要的工艺控制变量、实时控 制参数放行或其他影响质量的产品属性,准确度非常重 要,使用TOC分析仪较合适。另一方面,如果准备用于一 般的TOC监控而不是用于关键的质量决定,则其他特性可 能比准确度更重要,使用TOC传感器较合适。 

       传感器一般用于监控工艺,而分析仪更适合管理工艺。传感器提供的数据仅供参考,分析仪提供的数据用于进行关 键的质量决定。TOC分析仪和传感器都具有重要的作用, 但在当前的超纯水(UPW)应用中其用途和作用不同(表 2)。

TOC技术

       水中的 TOC 测量涉及测量初始CO2(无机碳,IC),将 所有有机物完全氧化为 CO2,然后测量其氧化后的 CO2浓度(总碳,TC)。TC – IC = TOC。 

       某些TOC传感器只是部分地将 有机物氧化为CO2,这也解释了 其对UV光难于氧化的化合物, 诸如甲醇和尿素,回收率低。其 他TOC分析仪和传感器将有机 物完全氧化为CO2。TOC传感器 都通过电导率池直接测量CO2(直接电导率,DC方法),会 产生假正及假负的TOC结果。与 之对比,TOC分析仪将CO2通过 选 择 性 膜 扩 散 到 去 离 子 (Deionized,DI)水中,然后使 用膜电导 (Membrane-Eonductometric, MC)法在电导池测量电离的CO2

图2显示水中不同有机物的回收率表现,显示出传感器和分析仪的功能不同。

在线TOC传感器和分析仪 

       TOC传感器比分析仪更小、便携、快速而且成本更低。Sievers 的CheckPoint TOC传感器对这些特点提供新一代的增强,而且是提供电池操作的第 一台也是唯 一的TOC测量装置。 图2显示分析仪和传感器之间的TOC性能差别。该图总结了不同 类别的有机物在三个TOC分析传感器 — Anatel 643、Thornton  5000、CheckPoint以及两台TOC分析仪 — Sievers* 500和900 上的响应的研究结果。

表2. 预期用途 — TOC分析仪和传感器

       所有传感器对含氯、硫和氮的有机物显示虚假的高回收 率,而对有机酸显示虚假的低回收率。Thornton 5000只 部分氧化有机物并报告较低的甲醇回收率结果。此外,该传感器对于难于氧化的尿素显示不同的回收率,该化合物 在半导体加工过程中非常重要。这些传感器还对痕量的非有机离子敏感,因此对标准品和系统适用性测试造成困难。

       使用膜电导测量方法的Sievers 900和500系列分析仪对所有测试化合物报告接近100%的回收率。 

结论 

• TOC分析仪和传感器都具有重要的作用,但在当前的 UPW应用中其作用不同(表2)。 

• 选择TOC装置时应着重考虑准确度和用途。 

• 使用MC方法的TOC分析仪比传感器更准确,应当应用于涉及法规报告、测量产品质量、实时放行、管理工 艺控制限值和进行系统验证的关键质量决策。 

• 使用DC方法的TOC传感器,无论制造厂商,与生俱来的对于许多类别的有机化合物测定不准确,不应依靠它们进行法规报告或对质量很关键的工艺。其合适用途是一般趋势、故障排查和一般诊断。

2019-09-02 11:12:23 503 0
在线TOC测定仪和离线测定仪的特点
 
2016-12-01 17:15:50 351 1
TOC在线监测仪与COD在线监测仪价格比较?
两个在线监测仪各方面比较,哪个更好?监测原理一不一样?
2013-07-17 02:54:32 420 4
TOC分析仪和硼分析仪在半导体行业中的应用

小碳:小碳又和大家见面啦!我们的#小碳微课堂#第五期将于8月28日开课。


本期直播课,我们还将从报名观众中随机抽取10名幸运儿,送出一份小礼品,快来报名吧!





(报名时,请准确填写您的邮寄地址。获奖名单将于9月初在微信公众号中公布,敬请留意。)


TOC分析仪和硼分析仪

在微电子/半导体行业中的应用


       时间:2020年8月28日  周五,14:00

       形式:网络直播课     注册报名后可随时回看

       费用:免费


      微电子/半导体超纯水系统旨在降低水中的潜在污染物,这些污染物可能造成电子器件细微缺陷,从而降低产品质量和生产率


       芯片尺寸的缩小和线宽的降低,对超纯水系统提出了更高要求,甚至需要将有机污染物控制到小于1 ppb。而为了准确检测如此微量的指标,要求所用的分析技术能够检出所有有机物组分,并且读值不受背景电导、pH和溶氧值变化的影响。


       总有机碳(TOC)分析仪为半导体超纯水检测需求提供了一种量化指标,可用于检测污染物,并适用于故障排除,或改进水系统和特种化学品的处理过程。


此次直播课程中,我们将与您分享以下议题,欢迎收看:

● 微电子/半导体行业超纯水系统中TOC监测的重要性

● TOC检测方法评审和Sievers®分析仪的解决方案

● TOC应用在超纯水系统中的监测点和目的

● 硼分析仪的介绍

● TOC对废水排放和生产化学品溶液纯度的监测


讲师介绍

   王延弘

   项目渠道经理

   Sievers分析仪

       王延弘经理是苏伊士水务技术与方案-Sievers分析仪的项目渠道经理,具有20余年水处理工艺系统设计的工作经验,熟悉制药和半导体用水处理系统中的预处理、反渗透、EDI、TOC等关键设备和仪器的性能,具有9年TOC分析仪的操作、使用和维护经验。


报名方式

       扫下列二维码,进行会议注册,注册成功后,我们将于直播当天通过微信公众号给您发送课程直播提醒,直播时登录直播链接,验证注册时的手机号,即可收看课程。

      若您未收到微信提醒,直播时可通过苏伊士Sievers分析仪的微信公众号菜单:ZX资讯-小碳微课堂进入课程直播。


       如您当天无法收看直播,课程结束后您也可以登录直播链接,验证注册时的手机号,收看课程回放。


2020-08-21 10:35:17 754 0
低 TOC 浓度分析的加压集成在线取样器(PiOS)

简介 

Sievers* M9e 总有机碳(TOC)分析仪的 “加压集成在线 取样器( PiOS , Pressurized Integrated On-Line  Sampler)” 配件专用于加强微电子应用中的超纯水 (UPW)系统的有机物监测能力。在微电子应用中 (TOC 通常小于 5 ppb),监测水质的微小变化至关重 要,能够确保Z终产品质量和优化处理工艺。 当要监测的浓度很低时,总碳(TC)和无机碳(IC)的 值非常接近,因此 TOC 测量值(TOC = TC - IC)会受信 噪等干扰因素的影响。周围环境中的微气泡就是这种干 扰源之一,会导致意外的 TOC 峰值。PiOS 能给分析仪 中的样品加压 3 - 5 psig,YZ气泡的形成,确保分析 仪在低浓度下进行准确的分析。

验证 Pios 

在下列条件下进行测试,验证配置了“加压集成在线取 样器(PiOS)” 和 “标准集成在线取样器(iOS)”的分 析仪的低 TOC 分析性能: • 正常运行模式 • Turbo 运行模式 • 各标样的 TOC 回收率 • 各种环境温度、入口压力、样品温度 PiOS 不影响系统任务的运行,其中包括校准、确认、 仪器检测限等系统任务。在微电子车间进行的外部测试 的结果表明,使用 PiOS 时能够报告稳定的亚 ppb 级的 TOC 分析结果。本文将在后面的部分中详细报告此验证 的结果。

降低噪声和峰值 

与标准 iOS 相比,PiOS 能够减少低 TOC 分析结果中 的 TOC 峰值和点对点噪声(见图 1a 和 1b)。

图 1a:使用标准 iOS 的 TOC 分析

图 1b:使用 PiOS 的 TOC 分析

此外,在长时间的低 TOC(<1 ppb)测试中,PiOS 能 够报告稳定的结果和可靠的“仪器到仪器”一致性,如图 2 所示。

图 2:使用 PiOS 进行长时间测试(SN =序列号)

与配置标准 iOS 的 Sievers 900 TOC 分析仪相比,配置 PiOS 的 Sievers M9e TOC 分析仪的分析结果显示出更好 的稳定性和更少的小尖峰(图 3)。

图 3:配置 PiOS 的 M9e 与配置标准 iOS 的 900

TOC 分析性能 

图 4 中的结果表明,使用配置了 PiOS 的 M9e TOC 分析仪,能够在单台仪器内和多台仪器间得到相同的有机化 合物回收率。

图 4:4台配置 PiOS 的 M9e的 TOC 回收率百分比

在回收监测期间,常用 Turbo 模式来帮助进行快速决 策。与普通模式下的情况类似,在 Turbo 模式下, PiOS 比标准 iOS 更能减少峰值(见图 5a 和 5b)。

图 5a: 配置 PiOS 的分析仪在 Turbo 模式下进行 TOC分析

图 5b: 配置标准 iOS 的分析仪在 Turbo模式下进行 TOC 分析

可以用可选的压力计套件来测量样品压力,样品压力的 理想范围是 5 - 40 psig。在以下方面,PiOS 不影响 M9e 分析仪的性能:

 TOC 回收率 

执行系统任务 

可以将可选的样瓶端口加到 PiOS,但这并非标准配置。 同高 TOC 应用相比,低 ppb 至亚 ppb 应用要求采用不 同的校准策略,以保证分析仪在低浓度下的分析性能。 在无 TOC 的情况下,自动归零功能强制校准曲线通过 零点。自动归零功能比校准标样更加有效,校准标样不 适用于低 ppb 至亚 ppb 运行 1。

结论 

PiOS 在低浓度(< 5 ppb TOC)应用中有更好的有机物 监测性能,其良好的稳定性、准确性、“仪器到仪器”一 致性对监测超纯水系统来说至关重要。PiOS 可安装于 Sievers M9e 便携式分析仪和在线型分析仪,可以安装在 新分析仪上,也可以作为现有分析仪的升级配置。 有了 PiOS,M9e 就能有效监测整个超纯水处理过程中的 有机污染物,如有机氮化合物和有机酸。PiOS 能够不 受干扰,提供稳定、准确、可靠的分析数据,从而优化 分析仪的在线 TOC 分析,更有效地监测低 ppb 甚至亚 ppb 级的超纯水系统。


参考文献: 

1. Operation, Calibration, and Autozero Guidance for TOC Monitoring in  Microelectronics UPW Applications. GE Analytical Instruments. 2015. Web. 2 Jun 2016.


2019-09-04 15:23:12 660 0
低TOC浓度分析的加压集成在线取样器(PiOS)

简介

       苏伊士Sievers® M9e总有机碳(TOC)分析仪的“加压集成在线取样器(PiOS,Pressurized Integrated On-Line Sampler)”配件专用于加强微电子应用中的超纯水(UPW)系统的有机物监测能力。在微电子应用中(TOC通常小于5ppb),监测水质的微小变化至关重要,能够确保Z终产品质量和优化处理工艺。

       当要监测的浓度很低时,总碳(TC)和无机碳(IC)的值非常接近,因此TOC测量值(TOC=TC-IC)会受信噪等干扰因素的影响。周围环境中的微气泡就是这种干扰源之一,会导致意外的TOC峰值。PiOS能给分析仪中的样品加压3-5psig,YZ气泡的形成,确保分析仪在低浓度下进行准确的分析。

验证PiOS

       在下列条件下进行测试,验证配置了“加压集成在线取样器(PiOS)”和“标准集成在线取样器(iOS)”的分析仪的低TOC分析性能:

·正常运行模式

·Turbo运行模式

·各标样的TOC回收率

·各种环境温度、入口压力、样品温度

       PiOS不影响系统任务的运行,其中包括校准、确认、仪器检测限等系统任务。在微电子车间进行的外部测试的结果表明,使用PiOS时能够报告稳定的亚ppb级的TOC分析结果。本文将在后面的部分中详细报告此验证的结果。

降低噪声和峰值

       与标准iOS相比,PiOS 能够减少低TOC分析结果中的TOC峰值和点对点噪声(见图1a和1b)。

图 1a:使用标准 ios 的 TOC 分析

图 2:使用 PiOS 进行长时间测试 (SN=序列号)

       此外,在长时间的低TOC(<1ppb)测试中,PiOS能够报告稳定的结果和可靠的“仪器到仪器”一致性,如图2所示。

图 3:配置 PiOS 的 M9e 与配置标准 ios 的 900

TOC分析性能

       图4中的结果表明,使用配置了 PiOS 的M9e TOC分析仪,能够在单台仪器内和多台仪器间得到相同的有机化合物回收率。

图 4:4台配置 PiOS 的 M9e 的 TOC 回收率百分比

      在回收监测期间,常用Turbo模式来帮助进行快速决策。与普通模式下的情况类似,在Turbo模式下,PiOS比标准iOS更能减少峰值(见图5a和5b)。

图5a:配置 PiOS 的分析仪在 Turbo 模式下进行 TOC 分析

图 5b: 配置标准 iOS 的分析仪在 Turbo 模式下进行 TOC 分析

      可以用可选的压力计套件来测量样品压力,样品压力的理想范围是5-40psig。在以下方面,PiOS不影响M9e分析仪的性能:

·TOC回收率

·执行系统任务

       可以将可选的样瓶端口加到 PiOS,但这并非标准配置。同高 TOC 应用相比,低ppb至亚ppb应用要求采用不同的校准策略,以保证分析仪在低浓度下的分析性能。在无 TOC 的情况下,自动归零功能强制校准曲线通过零点。自动归零功能比校准标样更加有效,校准标样不适用于低ppb至亚ppb运行1

结论

       PiOS 在低浓度(<5ppb TOC)应用中有更好的有机物监测性能,其良好的稳定性、准确性、“仪器到仪器”一致性对监测超纯水系统来说至关重要。PiOS 可安装于 Sievers M9e便携式分析仪和在线型分析仪,可以安装在新分析仪上,也可以作为现有分析仪的升级配置。

       有了PiOS,M9e就能有效监测整个超纯水处理过程中的有机污染物,如有机氮化合物和有机酸。PiOS能够不受干扰,提供稳定、准确、可靠的分析数据,从而优化分析仪的在线TOC分析,更有效地监测低ppb甚至亚ppb级的超纯水系统。

参考文献:

1.Operation, Calibration, and Autozero Guidance for TOC Monitoring inMicroelectronics UPW Applications. GE Analytical Instruments. 2015. Web.2 Jun 2016.








2019-11-12 17:29:38 435 0
制YY水和清洁验证中的TOC检测:实验室、旁线和在线分析比较

原文英文版刊登于制药杂志《American Pharmaceutical Review》2020年3月刊,本文进行了补充修改。


总有机碳(TOC)和电导率检测是确保水质纯净度和设备清洁度的重要质量控制措施,执行时可配合各种取样场合和效率需求。TOC和电导率分析有助于制造商符合药典要求,或满足工艺需求。虽然传统的电导率检测采用测量仪加探头,但先进的TOC检测技术在进行TOC分析的同时也可以提供电导率检测结果。

TOC检测技术的三种常见方式包括实验室分析(实验室Lab检测)、在生产车间里进行旁线分析(旁线At-line检测)和在水系统中进行在线分析(在线On-line检测)。在选择何种策略和方式最适合某种特定应用时,考虑以下因素,确保发挥该技术的zui大功效。

实验室分析

TOC和电导率分析是符合cGMP的质量控制(QC)实验室的常规检测。台式TOC分析仪和软件方便用户设置协议、执行系统协议、一次运行大批样品、管理数据、电子签名和输出数据。

无论TOC分析仪是用于清洁验证样品还是水质监控,对绝大多数实验室而言,效率仍然是一个重要因素。例如,药企可以采取“精益实验室”解决方案,用一个样品瓶同时进行TOC和电导率分析。分析中使用特种样品瓶,防止样品瓶表面发生离子浸出,同时防止大气中的二氧化碳溶解到样品中——这两种原因都可能导致电导率超标。使用测量仪加探头的传统电导率检测也可能在测量结果达到稳定状态的过程中从开口样品瓶中导入大气中的二氧化碳。测量仪加探头分析是一种非常耗时的方法,要求分析员每检测一个样品,等参数稳定后人工抄录数据。

TOC和电导率同步检测是精益实验室的保证,提高了用户对数据和数据可靠性的信心,同时避免了污染风险。无论使用哪种检测方式,如果需要符合cGMP,正确校准和验证的仪器非常重要。

实验室分析时,不可避免的是取样必须从设备或纯化水使用点中采集。另外,QC实验室流程可能会消耗时间,这阻碍了对cGMP设备的GX放行。在频率高、样品吞吐量大的情况下,旁线或在线分析可以满足监控程序中效率提升的需求。

旁线分析

旁线分析可大幅提高工艺流程效率,尤其在有时间限制的清洁验证项目中。旁线分析采用便携式TOC分析仪,直接就近安放在受监控的工艺旁边。清洁过程完成时即采集所需样品,分析几乎同时进行。这种方式在清洁验证样品,特别是棉签擦拭及对监控时间非常关键的操作应用中最为成功。

实验室工作流程可能非常缓慢拖沓,导致设备意外停机。与质量控制、取样、分析和数据放行等方面的协调活动可能导致设备长期闲置。为确保设备清洁后更快周转,旁线分析方便样品采集后立即通过触手可及的便携式TOC分析仪进行分析。可在数分钟内生成并查看棉签和清洗样品的结果,避免了质量控制工作流程造成的延时,降低了设备待机时间。

与实验室分析相比,对于正确的应用,旁线监测可提升效率,避免质量控制工作流程,取样后数分钟内即可产生数据。

至于更高 效率的方式则是在线分析,在线分析可实时放行cGMP设备,彻底摆脱取样过程。虽然旁线分析适用于很多应用,但在一定时间内分析的样品数量仍然有限,而在线分析可以克服这一点。另外,取样仅代表某一个时间点,如果要对工艺流程进行多时间点分析和更深入的了解,随时间而产生多数据的在线分析可能是ZJ方案。

在线分析

如上所述,清洁验证的一个痛点是因为取样和样品分析导致的设备停机时间。虽然旁线分析可以减少时间,但在线分析实现了实时的数据生成和设备周转。

通过使用直接集成于原位清洗(CIP)设备上的TOC分析仪的实时数据,设备放行时间从数天减少到数分钟。自动化程序将原位清洗样品从设备直接送至分析仪进行检测。在样品分析的同时,数据自动输出到现场数据主机。

在线分析在对清洁验证效率和质量提升方面起到了巨大作用,在制YY水检测方面同样如此。纯化水在线TOC和电导率检测减少或取消了使用点水样采集。在线分析可实时进行水系统的趋势诊断,方便采取预防和纠正措施。

无论是清洁验证、还是制YY水检测,转向在线分析时,应shou选传统化验分析的同类技术。将成熟的实验室方法投入到在线应用会简化方法转移流程。无需执行全面的方法验证,仅需使用相同的验证技术,执行等效协议即可证明方法的适用性。

无论开展实验室、旁线,还是在线TOC分析,都要考虑自己对效率、分析性能和数据可靠性方面的目标。提供高准确度、精确度和数据可靠性,同时又节省时间的设备对自己的监测方案最有价值。虽然电导率检测常在实验室用分析仪加探头进行,但当前分析测试技术的进步实现了电导率与其他参数同步检测,自动化程度更高。TOC和电导率是理解和控制纯化水化学纯度和设备清洁度的重要质量指标,技术的进步使TOC和电导率监测比以往更快、更可靠。

无论您使用实验室、旁线还是在线TOC分析,Sievers® M9系列TOC分析仪都有相应型号供您选择。

Sievers® M9实验室型TOC分析仪

Sievers® M9便携式TOC分析仪


•便携式分析仪更快得到分析结果,及设备放行

•减少样品传输

•单台仪器监控多个设备清洁周期

•启用过程控制(PAT)

•快速排查清洗中的问题

•工艺中检测


TOC 和电导率的gao效jing准分析

•二合一药典检测

•节省分析时间,提高分析效率


提高生产率,加快分析速度

•自动试剂模式更快地创建方法

•减少由于环境、样品处理、转录等误差所造成的不合规OOS(Out of Specification)调查

•可选的Turbo模式每4秒更新TOC、IC、TC 测量结果,无需等待


Sievers® M9在线型TOC分析仪


•无样品传输

•启用过程控制(PAT)

•持续监测清洗周期

•结合自动化,立即设备放行


提高生产率,加快分析速度

•2分钟产生结果(标准模式)

•可选的Turbo模式每4秒更新TOC、IC、TC测量结果,确保捕捉到短暂的偏移


作者介绍

Michelle Neumeyer

苏伊士水务技术与方案——Sievers分析仪生命科学产品应用专员。

Michelle曾在诺华(Novartis)和阿斯利康(AstraZeneca)从事质量工作,负责水系统、测试方法和仪器。Michelle拥有科罗拉多大学博尔德分校分子、细胞和发育生物学专业学士学位。




2020-08-26 16:20:59 631 0
制YY水和清洁验证中的TOC检测:实验室、旁线和在线分析比较

原文英文版刊登于制药杂志《American Pharmaceutical Review》2020年3月刊,本文进行了补充修改。


总有机碳(TOC)和电导率检测是确保水质纯净度和设备清洁度的重要质量控制措施,执行时可配合各种取样场合和效率需求。TOC和电导率分析有助于制造商符合药典要求,或满足工艺需求。虽然传统的电导率检测采用测量仪加探头,但先进的TOC检测技术在进行TOC分析的同时也可以提供电导率检测结果


TOC检测技术的三种常见方式包括实验室分析(实验室Lab检测)、在生产车间里进行旁线分析(旁线At-line检测)和在水系统中进行在线分析(在线On-line检测)。在选择何种策略和方式最适合某种特定应用时,考虑以下因素,确保发挥该技术的ZD功效。


实验室分析


TOC和电导率分析是符合cGMP的质量控制(QC)实验室的常规检测。台式TOC分析仪和软件方便用户设置协议、执行系统协议、一次运行大批样品、管理数据、电子签名和输出数据。


无论TOC分析仪是用于清洁验证样品还是水质监控,对绝大多数实验室而言,效率仍然是一个重要因素。例如,药企可以采取“精益实验室”解决方案,用一个样品瓶同时进行TOC和电导率分析。分析中使用特种样品瓶,防止样品瓶表面发生离子浸出,同时防止大气中的二氧化碳溶解到样品中——这两种原因都可能导致电导率超标。使用测量仪加探头的传统电导率检测也可能在测量结果达到稳定状态的过程中从开口样品瓶中导入大气中的二氧化碳。测量仪加探头分析是一种非常耗时的方法,要求分析员每检测一个样品,等参数稳定后人工抄录数据。


TOC和电导率同步检测是精益实验室的保证,提高了用户对数据和数据可靠性的信心,同时避免了污染风险。无论使用哪种检测方式,如果需要符合cGMP,正确校准和验证的仪器非常重要。


实验室分析时,不可避免的是取样必须从设备或纯化水使用点中采集。另外,QC实验室流程可能会消耗时间,这阻碍了对cGMP设备的GX放行。在频率高、样品吞吐量大的情况下,旁线或在线分析可以满足监控程序中效率提升的需求。


旁线分析


旁线分析可大幅提高工艺流程效率,尤其在有时间限制的清洁验证项目中。旁线分析采用便携式TOC分析仪,直接就近安放在受监控的工艺旁边。清洁过程完成时即采集所需样品,分析几乎同时进行。这种方式在清洁验证样品,特别是棉签擦拭及对监控时间非常关键的操作应用中最为成功。


实验室工作流程可能非常缓慢拖沓,导致设备意外停机。与质量控制、取样、分析和数据放行等方面的协调活动可能导致设备长期闲置。为确保设备清洁后更快周转,旁线分析方便样品采集后立即通过触手可及的便携式TOC分析仪进行分析。可在数分钟内生成并查看棉签和清洗样品的结果,避免了质量控制工作流程造成的延时,降低了设备待机时间。


与实验室分析相比,对于正确的应用,旁线监测可提升效率,避免质量控制工作流程,取样后数分钟内即可产生数据。


至于更GX率的方式则是在线分析,在线分析可实时放行cGMP设备,彻底摆脱取样过程。虽然旁线分析适用于很多应用,但在一定时间内分析的样品数量仍然有限,而在线分析可以克服这一点。另外,取样仅代表某一个时间点,如果要对工艺流程进行多时间点分析和更深入的了解,随时间而产生多数据的在线分析可能是ZJ方案。


在线分析


如上所述,清洁验证的一个痛点是因为取样和样品分析导致的设备停机时间。虽然旁线分析可以减少时间,但在线分析实现了实时的数据生成和设备周转


通过使用直接集成于原位清洗(CIP)设备上的TOC分析仪的实时数据,设备放行时间从数天减少到数分钟。自动化程序将原位清洗样品从设备直接送至分析仪进行检测。在样品分析的同时,数据自动输出到现场数据主机。


在线分析在对清洁验证效率和质量提升方面起到了巨大作用,在制YY水检测方面同样如此。纯化水在线TOC和电导率检测减少或取消了使用点水样采集。在线分析可实时进行水系统的趋势诊断,方便采取预防和纠正措施


无论是清洁验证、还是制YY水检测,转向在线分析时,应shou选传统化验分析的同类技术。将成熟的实验室方法投入到在线应用会简化方法转移流程。无需执行全面的方法验证,仅需使用相同的验证技术,执行等效协议即可证明方法的适用性。


无论开展实验室、旁线,还是在线TOC分析,都要考虑自己对效率、分析性能和数据可靠性方面的目标。提供高准确度、精确度和数据可靠性,同时又节省时间的设备对自己的监测方案最有价值。虽然电导率检测常在实验室用分析仪加探头进行,但当前分析测试技术的进步实现了电导率与其他参数同步检测,自动化程度更高。TOC和电导率是理解和控制纯化水化学纯度和设备清洁度的重要质量指标,技术的进步使TOC和电导率监测比以往更快、更可靠


无论您使用实验室、旁线还是在线TOC分析,Sievers® M9系列TOC分析仪都有相应型号供您选择。


Sievers® M9实验室型TOC分析仪



█ TOC和电导率的精益分析

   ▋ 适合当前实验室和数据分析的检测模式,是分析仪的GX集成。

   ▋ 二合一药典检测

   ▋ 节省分析时间,提高分析效率



█ 提高生产率,加快分析速度

   ▋ 自动试剂模式更快地创建方法

   ▋ 减少由于环境、样品处理、转录等误差所造成的不合规OOS(Out of Specification)调查

   ▋ 可选的Turbo模式将分析时间从2分钟减少到4秒,自动进样器每次运行时可节省数小时时间


Sievers® M9便携式TOC分析仪



   ▋ 便携式分析仪更快得到分析结果,及设备放行

   ▋ 减少样品传输

   ▋ 单台仪器监控多个设备清洁周期

   ▋ 启用过程控制(PAT)

   ▋ 快速排查清洗中的问题

   ▋ 工艺中检测


█ TOC 和电导率的GXJZ分析

   ▋ 二合一药典检测

   ▋ 节省分析时间,提高分析效率


█ 提高生产率,加快分析速度

   ▋ 自动试剂模式更快地创建方法

   ▋ 减少由于环境、样品处理、转录等误差所造成的不合规OOS(Out of Specification)调查

   ▋ 可选的Turbo模式每4秒更新TOC、IC、TC 测量结果,无需等待


Sievers® M9在线型TOC分析仪


   ▋ 无样品传输

   ▋ 启用过程控制(PAT)

   ▋ 持续监测清洗周期

   ▋ 结合自动化,立即设备放行



█ 提高生产率,加快分析速度

   ▋ 2分钟产生结果(标准模式)

   ▋ 可选的Turbo模式每4秒更新TOC、IC、TC测量结果,确保捕捉到短暂的偏移

2020-08-28 09:34:54 598 0
水质五参数分析仪和cod在线监测仪的区别
 
2017-07-18 06:06:27 404 1
氨逃逸分析仪和在线式氨气检测仪一样吗
 
2016-10-14 13:45:04 559 1
TOC在线检测仪的性能特点

环境监测对药品的质量和安全至关重要。纯化水和注射用水等关键公用设备涉及到从清洁到批处理的几乎每个制造步骤。对于功能更强大的监测程序,可以使用总有机碳TOC分析仪检测纯化水回路,以进行过程控制并且实时检测到不合格或不符合趋势的结果。及时的TOC检测会减少对关键设备和在线处理批次的影响,从而节省时间和成本。

TOC在线检测仪是一款专门用于在线检测纯化水、注射用水、超纯水等去离子水中总有机碳的仪器。该仪器可以通过机器自身控制,也可由安装在计算机上的软件控制,并进行数据的分析处理,功能更完善,显示内容丰富,数据查询方便,操作简单。
性能特点
1、仪器是防水防尘。
2、电脑端口操作,一个端口可控制多台检测单元。
3、具有电子签名、审计追踪等功能。
4、紫外灯,蠕动泵易观察、易维护操作。
5、免拆式设计,便于工况观察维护。

2022-08-09 15:57:48 276 0
TOC 分析仪分析硫酸中的总有机碳(TOC)

挑战 

很多工艺使用无机酸作为重要原料。在确定特定应用的 适用性时,尤其是在确定该应用对工艺和产品的影响时, 准确评估酸的质量是至关重要的。 

酸中的可溶性杂质会影响生产工艺和产品质量。过量的有机污染物带来以下问题:

- 生产工艺效率低下 

- 产品被污染 

- 生产批次不合格 

- 工艺和产品偏差

化工行业都需要确定和控制无机酸的质量。这些行业包 括:原料药物( API , Active Pharmaceutical  Ingredient)、化肥、半导体加工、化学衍生物。酸用 于离子交换树脂再生,也可以是产品配方的原料。

在半导体行业中,硫酸用于晶圆蚀刻工艺。酸的纯度和 洁净度对生产至关重要,这就要求硫酸供应商对产品批 次进行污染控制,以满足工艺要求。很多行业在电镀工 艺中使用硫酸铜。为了提高化学品的性能,生产商添加 有机基体的匀染剂和增白剂。了解添加剂的用量及其潜 在的分解物,有助于控制产品质量和工艺。

解决方案

由于有机污染物的种类繁多,用总有机碳(TOC,Total  Organic Carbon)作为评估酸质量的参数不失为测量样 品杂质的有效方法。但是,分析仪器必须具有酸基体的 化学耐受性,并能在低 pH 值下有效氧化有机碳,这样才能得到正确的测量结果。

Sievers InnovOx ES 实验室型 TOC 分析仪采用超临界水 氧化(SCWO,Supercritical Water Oxidation)技术来 测量酸溶液中的 TOC 的 ppm 和 ppb 含量。事实证明,SCWO 技术能够对磷酸、盐酸、硝酸、硫酸进行精 准 的 TOC 定量分析。

技术

Sievers InnovOx 实验室型分析仪采用 SCWO 技术, 将有机碳分子氧化成CO2,然后用非分散红外 (NDIR,Non-dispersive Infrared)检测技术进行精 确定量。在使用 SCWO 技术时,先在水的临界点以上 对样品进行加热和加压。在一定条件下(375˚C 和 220 巴),水成为超临界流体,水中的有机物高度可 溶,而无机盐不溶。这就提高了氧化效率,能够精确 测量腐蚀性和复杂基质中的 TOC,甚至浓酸中的 TOC。

硫酸中含有来自其自身生产过程的各种杂质,包括有 机污染物。这些污染物即使含量极低,也会给要求使 用高纯度原料的工艺带来风险,尤其是给半导体和电 化学沉积工艺带来风险。因此,为了优化工艺操作、 提供产量,必须对酸的质量进行定量分析。

硫酸(H2SO4

在测试中,向 H2SO4 中加入不同浓度的邻苯二甲酸氢 钾(KHP),以此来评估 Sievers InnovOx 实验室型 分析仪的分析硫酸中 TOC 的能力。将 96%浓度的 ACS 级硫酸稀释到 24%,然后分别加入 0.2、0.5 和 2  ppm TOC 的 KHP,进而证明了分析仪的分析能力。

分析在 0 - 100 ppm 范围内进行,由于样品的 pH 值 适用于 TOC 分析,故无需使用酸剂。10%过硫酸钠氧 化剂足以分析此范围的 TOC。

表 1 中的分析数据包括加标浓度、测自空白 24%硫酸 溶液的 TOC、实测 TOC、以及回收 TOC 的含量和百分比。回收的 TOC 值等于实测 TOC 减去空白 TOC。

表中的数据证明了分析仪能够定量分析浓酸溶液中的 低浓度 TOC。当 TOC 从 2 ppm 降至 0.2 ppm 时,回收率百分比就会从 偏离,这主要是因为加标浓度(200 ppb)接近空白浓度(180 ppb)。在这种低浓 度下,空白浓度或仪器基线的波动会导致结果的波动。

表 1:在 24% H2SO4中的 TOC 分析

第二项测试分析了各种浓度硫酸的 TOC 回收率。将 1  ppm TOC 的 KHP 分别加到 1、5、10 和 24%的 H2SO4中, 测量数据如表 2 所示。回收的 TOC 值等于实测 TOC 减 去空白 TOC。

表 2:1 - 24% H2SO4的 KHP 回收率

5 - 24% H2SO4的 1 ppm TOC 回收率非常好, 但 1%  H2SO4的 TOC 回收率就偏离了 45%。 当 TOC 浓度接近 空白 TOC 浓度时,空白测量值的波动会显著影响到计 算的 TOC 结果。

测试还评估了 Sievers InnovOx 实验室型分析仪分析 24% ACS 级硫酸中 0.1 - 0.5 ppm 范围 TOC 的能力。分 别将 100、200、300 ppb KHP 加到 ACS 级硫酸中,测 量结果如表 3 所示。

表 3:24% H2SO4的低于 500 ppb 的 KHP 回收率

测量结果显示了预期的增长趋势。100 ppb 加标显示 了 50 ppb 的增长,200 ppb 加标显示了 120 ppb 的增 长,300 ppb 加标显示了 230 ppb 的增长。显然,分 析仪能够检测出 410 ppb 基线上的 50 ppb 的增长, 这表明分析仪的灵敏度完全适用于分析如此低的浓度。 对硫酸进行高灵敏度分析的限制因素是基体中的基线 TOC。同任何其它分析一样,基线值附近的结果容易 变化。人们都知道,H2SO4的纯度低于同样浓度的其 它无机酸(如 HCl、HNO3等)的纯度,因此不难预料, 纯品 H2SO4中含有一定量的有机杂质。

结论 

Sievers InnovOx 实验室型分析仪能够精 准地测量出浓度Z 高为 24%的硫酸中的 TOC。 Z 高 2 ppm KHP 的 实测回收率具有出色的精确性和准确性。空白测量值 的大小和稳定性是对 H2SO4进行高灵敏度 TOC 分析的 限制因素。分析仪的灵敏度(检测限 LOD = 水中的 50 ppb)足以区分 100、200 和 300 ppb TOC。分析仪 在整个测试过程中表现出极 佳的耐用性,且能耐受 H2SO4基质,无降解迹象。

2019-09-18 16:55:13 1392 0
测定TOC都有哪些方法,除了toc快速测定仪和国标
 
2012-10-11 05:14:17 466 2
TOC清洁验证棉签套装比较

01 简介

清洁验证研究和持续的清洁周期监控都需要使用TOC浓度低且稳定的样品瓶来进行灵敏度和可靠性高的擦拭和淋洗样品分析。使用TOC浓度较高且差异较大的清洁验证套装,会增加失败的风险,从而不得不进行额外清洁,或者做出不准确的设备清洁度评估,导致代价高昂甚至危险的后果。


本文评估以下两种不同的清洁验证套装,均包括低TOC棉签和TOC样品瓶:

1. 苏伊士公司的Sievers®清洁验证套装

2. Texwipe* TX3342 TOC清洁验证批量套装


02 评估

本文评估各供应商的清洁验证套装的基准TOC贡献和差异。在测试中,我们分析了各供应商的两个批次的棉签(每批次12个棉签),棉签均装在40毫升超纯水的样品瓶中(每个供应商提供12个样品瓶)。两种清洁验证套装均使用Texwipe棉签。


03 基准TOC结果

04 结论和建议

本文中的数据显示,测试的两个批次的Sievers清洁验证套装的背景TOC都比较低而且稳定。此外,在同一批次内,Sievers套装的浓度差异较小(Sievers的两个批次的标准偏差分别为3.3和3.4ppb,Texwipe的同两个批次的标准偏差分别为4.0和6.3ppb)。在不同批次之间,Sievers套装的浓度差异也较小。由于Sievers套装的背景TOC低而且差异小,因而更能提供灵敏而精确的清洁数据。Sievers的高品质保证和样品瓶的完全可追溯性为准确而完整的分析提供了强有力的保障。


在进行清洁验证时,Sievers认证的样品瓶、清洁验证套装、预酸化样品瓶都具有出众的性能和稳定性。如果您需要使用酸化擦拭样品,比如用来回收蛋白质或肽,Sievers给您提供装有酸化水的预酸化样品瓶。无论您是要回收常规化合物还是难以回收的化合物,Sievers认证的和专用的TOC样品瓶都能帮助您完成极其准确的分析。


*Illinois Tool Works Inc的商标

2020-01-08 16:07:13 537 0
橡胶加工分析仪和DMTA?
那位高人介绍一下橡胶加工分析仪和DMTA的区别,他们是不是动态粘弹性能测试?谢谢... 那位高人介绍一下橡胶加工分析仪和DMTA的区别,他们是不是动态粘弹性能测试?谢谢 展开
2014-07-29 06:45:25 577 1

1月突出贡献榜

推荐主页

最新话题