仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

OPGM-2000系列 激光高精度 汽车尾气遥感模块

宁波海尔欣光电科技有限公司 2020-05-13 10:31:29 711  浏览
  • 1. 产品简介

    近几年国内机动车尾气遥感监测技术得到快速发展。技术路线由diyi、二代的NDIR非分散红外光谱、DOAS 紫外差分吸收光谱,逐渐演变至第三代TDLAS可调节半导体激光吸收光谱技术。

     

    传统的尾气遥测系统采用 NDIR、DOAS 相结合的方式,设备造价低,但在户外尾气遥感监测应用领域受环境的温度、湿度以及其它背景气体影响较严重,测量响应时间慢,存在严重的漂移,导致无法准确测量尾气排放各污染物浓度值。Z新一代的TDLAS可调谐半导体激光吸收光谱技术路线,在抗干扰能力、测量分辨率、信号稳定性、光源寿命、运维成本以及测量响应时间等方面具有明显的优势。

     

    海尔欣科技依托丰富的中远红外激光的气体检测领域的技术积累,全新推出OPGM-2000系列高精度气体遥感全激光监测模块。采用近-中红外半导体激光器(QCL)测量 CO、CO2、NO、HC,四个气体组分采用独立灵活的单组分模块化设计,体积小,性价比高既方便工程公司进行系统集成,也适合对传统非激光方案的遥测模组进行升级改造。

     

     

    单组分遥测模块示意图


     

    测量原理示意图


    2. 产品特色

    1. 基于激光吸收光谱遥感技术,非接触式测量无背景气体交叉干扰,检测精度高

    2. 采用单组分独立模块化设计,适合替换现有非激光NO、CH等测量方案,保留其他组分;

    3. 系统响应时间约为0.5秒,快速检测尾气排放

    4. 内置参比校准池,实时校准波长和精度,系统漂移小

    5. 集成温度和气压传感器,自动进行温度气压补偿,测量准确度高

    6. 采用逆反射技术,实现GX的反射光信号收集,自动进行信号强度补偿,降低扬尘等引起信号衰减导致的测量误差

    7. 利用绿色激光测量不透光度,同时作为引导光便于光路的调节

    8. 适合同时测量汽油车和柴油车排放;

    9. 符合《在用柴油车排气污染物测量方法及技术要求(遥感检测方法)》(HJ845-2017)标准要求

    技术参数表

    针对汽车尾气遥测应用的激光模块

    测量原理

    红外TDLAS技术,每组分由单独模块测量

    技术指标

    检测气体

    独立组分NO\CH\CO\CO2

    检测量程

    NO:0-10000ppm

    CO2:0%~16%

    CO:0%~10%

    HC:0-10000ppm

    检测精度

    NO精度:相对误差±10%且误差±20ppm

    CO2精度:相对误差±10%且误差为0.25%;

    CO精度:相对误差±10%且误差为0.25%;

    HC精度:相对误差±10%且误差±10ppm

    不透光度0-

    误差为±2%且相对误差为±5%

    测量距离

    可实现4车道往返30米光程测量

    响应时间

    <0.5

    信号接口

    信号传输

    RS232/RS485

    输出频率

    10/20/50/100Hz可选

    工作条件

    环境温度

    -10~50 

    环境气压

    80~120 kPa

    电源功耗

    24 VDC @ 200 W

    安装方式

    水平/垂直固定式安装

    尺寸/重量

    光学系统

    380´140´100 mm3(护罩内),~5 kg

     

     

    SDK 软件界面(示例)

    设备清单

    序号

    名称

    数量

    备注

    1

    气体遥测主机

    1


    2

    中控

    1


    3

    通信电缆

    1根

    RS232或以太网口选配件

    4

    SDK软件

    1套


     

    不同遥测技术方案对比


参与评论

全部评论(0条)

热门问答

OPGM-2000系列 激光高精度 汽车尾气遥感模块

1. 产品简介

近几年国内机动车尾气遥感监测技术得到快速发展。技术路线由diyi、二代的NDIR非分散红外光谱、DOAS 紫外差分吸收光谱,逐渐演变至第三代TDLAS可调节半导体激光吸收光谱技术。

 

传统的尾气遥测系统采用 NDIR、DOAS 相结合的方式,设备造价低,但在户外尾气遥感监测应用领域受环境的温度、湿度以及其它背景气体影响较严重,测量响应时间慢,存在严重的漂移,导致无法准确测量尾气排放各污染物浓度值。Z新一代的TDLAS可调谐半导体激光吸收光谱技术路线,在抗干扰能力、测量分辨率、信号稳定性、光源寿命、运维成本以及测量响应时间等方面具有明显的优势。

 

海尔欣科技依托丰富的中远红外激光的气体检测领域的技术积累,全新推出OPGM-2000系列高精度气体遥感全激光监测模块。采用近-中红外半导体激光器(QCL)测量 CO、CO2、NO、HC,四个气体组分采用独立灵活的单组分模块化设计,体积小,性价比高既方便工程公司进行系统集成,也适合对传统非激光方案的遥测模组进行升级改造。

 

 

单组分遥测模块示意图


 

测量原理示意图


2. 产品特色

1. 基于激光吸收光谱遥感技术,非接触式测量无背景气体交叉干扰,检测精度高

2. 采用单组分独立模块化设计,适合替换现有非激光NO、CH等测量方案,保留其他组分;

3. 系统响应时间约为0.5秒,快速检测尾气排放

4. 内置参比校准池,实时校准波长和精度,系统漂移小

5. 集成温度和气压传感器,自动进行温度气压补偿,测量准确度高

6. 采用逆反射技术,实现GX的反射光信号收集,自动进行信号强度补偿,降低扬尘等引起信号衰减导致的测量误差

7. 利用绿色激光测量不透光度,同时作为引导光便于光路的调节

8. 适合同时测量汽油车和柴油车排放;

9. 符合《在用柴油车排气污染物测量方法及技术要求(遥感检测方法)》(HJ845-2017)标准要求

技术参数表

针对汽车尾气遥测应用的激光模块

测量原理

红外TDLAS技术,每组分由单独模块测量

技术指标

检测气体

独立组分NO\CH\CO\CO2

检测量程

NO:0-10000ppm

CO2:0%~16%

CO:0%~10%

HC:0-10000ppm

检测精度

NO精度:相对误差±10%且误差±20ppm

CO2精度:相对误差±10%且误差为0.25%;

CO精度:相对误差±10%且误差为0.25%;

HC精度:相对误差±10%且误差±10ppm

不透光度0-

误差为±2%且相对误差为±5%

测量距离

可实现4车道往返30米光程测量

响应时间

<0.5

信号接口

信号传输

RS232/RS485

输出频率

10/20/50/100Hz可选

工作条件

环境温度

-10~50 

环境气压

80~120 kPa

电源功耗

24 VDC @ 200 W

安装方式

水平/垂直固定式安装

尺寸/重量

光学系统

380´140´100 mm3(护罩内),~5 kg

 

 

SDK 软件界面(示例)

设备清单

序号

名称

数量

备注

1

气体遥测主机

1


2

中控

1


3

通信电缆

1根

RS232或以太网口选配件

4

SDK软件

1套


 

不同遥测技术方案对比


2020-05-13 10:31:29 711 0
转载 | 高光谱遥感数据处理系列(六)监督分类

高光谱遥感数据处理系列(六)

非监督分类是一种面对数据本身的分类方法,与之相对应的:监督分类,则是面向先验知识的分类方法。监督分类是指给定已知类型的数据,通过建模的方式将这些数据与对应的类型建立映射关系,并将这种关系应用到未知类型的数据上的过程。如果每种类型用一个数字来表示,分类任务可以看做回归分析的一种特例。


主界面分区


ROI工具

监督分类需要有已知类型的数据集作为先验知识进行训练,称为训练集。一般可以通过目视解译,或者实地样方调查的方式获取训练集。构建训练集的方法如下:


在主菜单②工具栏中点击打开Region of Interest(ROI) Tool,进行兴趣区选取:


ROI工具

最基本的ROI选取过程如上图所示,首先选择①工具添加新的ROI范围,在②中调整ROI的名称和颜色,在③中选择绘制ROI的图形形状,④在图上绘制ROI,完成后右键Accept shape type。如果想要绘制带有空洞的图形,可以点击复选框⑤所示的Multi Part复选框,然后在影像上绘制两个叠加的图形,完成后右键 Accept。


使用File可以进行ROI图层的读取与保存

如果选取好了ROI可以使用Options可以利用对ROI本身进行融合(Merge(Union/Intersection)ROI),计算离散度(Compute ROI Separability),或者使用对ROI范围内的图像进行统计(Compute Statistics from ROIs)。另外也可以使用ROI对图像进行裁剪。


除了使用不同形状进行框选,还可以使用像元,自动区域生长,阈值选取等方式产生ROI。


在ENVI的帮助文件中详细介绍了这些工具的使用方法。在主界面①菜单栏 Help 中打开-> 在左侧Contents选项卡中的:book:ROIs, Vectors, Annotations,请读者自行查阅。



监督分类

在训练集选择完毕后就可以进行监督分类,ENVI中提供了多种监督分类的工具,包括:

  • 平行六面体(Parallelepiped)

  • 最 小距离(Minimum Distance)

  • 马氏距离(Mahalanobis Distance)

  • 最 大似然(Maximum Likelihood)

  • 神经网络(Neural Net)

  • 支持向量机(Support Vector Machine)

  • 波谱角(Spectral Angle Mapper)


这里我们介绍两种监督分类方法,最 大似然法和波谱角方法。


01最 大似然法

在ENVI的帮助文件中详细介绍了各种分类方法的原理。在主界面①菜单栏 Help 中打开-> 在左侧Contents选项卡中Classification->Supervised Methods中,最 大似然法定义为:


最 大似然分类假设每个波段中每个类别的统计数据呈正态分布,并计算给定像素属于特定类别的概率。每个像素被分配到具有最 高概率(即最 大似然)的类别。


根据该定义,最 大似然法将每个类别投影到特定的分布上,分类问题被转化为分布相似性问题。


在主界面⑤中搜索Maximum Likelihood打开最 大似然分类工具。首先要选择进行训练的数据,需要强调的是,我们选择在上篇文中生成的主成分分析的结果进行分类,而不是影像本身,具体原因在上篇文章中有详细描述。



分类结果如下所示:


02波谱角方法

光谱角映射器 (SAM) 是一种基于物理的光谱分类,它使用 n 维角度将像素与参考光谱进行匹配。该算法通过计算光谱之间的角度并将它们视为维数等于波段数的空间中的向量来确定两个光谱之间的光谱相似性。SAM 使用的端元光谱可以来自 ASCII 文件或光谱库,或者您可以直接从图像中提取它们(作为 ROI 平均光谱)。SAM 比较端元谱向量与 n 维空间中每个像素向量之间的角度。较小的角度代表与参考光谱更接近。


在主界面⑤中搜索Spectral Angle Mapper打开光谱角工具,在端元集合(Endmember Collection:SAM)中导入选取的ROI,将上一步选取的ROI所在范围的光谱均值作为特定类别的标准光谱。SAM的本质是将分类问题转化为对比未知类别数据与标准光谱的余弦距离的问题。需要强调的是,我们选择主成分分析的结果进行分类,而不是影像本身,具体原因在上篇文章中有详细描述。



分类结果如下所示:

小结

本文中我们介绍了两种监督分类的方法,相对于非监督分类,监督分类通过融入先验知识,提供了有明确类别的结果,这大大减少了进行后续处理的成本。但是对于遥感应用来说,获取地面真值的成本较高,通过目视解译的方式会不可避免地引入人为误差,给结果带来不确定性。正如上一篇文章提到,数据和特征决定了分类的上限,而分类的方法只能逼近这个上限。如何构建质量高、数量多的训练集,权衡成本是监督分类需要考虑的问题。


2023-06-12 10:35:36 334 0
UC系列高精度冷水机使用说明书(A版)

2023-05-30 09:32:12 187 0
UC/IC系列高精度冷水机快速操作指南


2023-06-07 16:58:49 179 0
半导体激光打标机怎么模块坏了。。。。。。。。
 
2013-07-08 17:50:54 291 2
翰马高精度激光投线仪
 
2016-03-23 20:05:24 352 1
莫顿高精度激光多普勒测速仪多少钱
 
2018-12-04 09:30:30 313 0
高光谱遥感数据处理系列(一)高光谱数据读取与可视化

高光谱遥感数据处理系列(一)

地表反射的太阳辐射包含着丰富的信息,从太阳外层大气的吸收到地球大气的吸收,经过与地物的相互作用反射回大气,最 终被传感器捕获。高光谱遥感可以在每个像元获取高分辨率的光谱数据,这些光谱信息提供了一种理解事物的新的维度。下图展示了几种典型地物的光谱。可以看出不同地物展现出显著不同的光谱特征。除此之外,同种地物在不同状态下,也可能在特定波段展现出显著不同的光谱特征。通过比对光谱数据,可以实现对地物区分,状态区分,异常监测等难以通过传统遥感手段实现的应用。高光谱遥感被广泛应用于农林业、矿业、环境、保险、等领域。



太阳辐射与典型地物反射率


通常彩色影像有红绿蓝三个波段,多光谱影像有几到十几个波段,而高光谱影像有着几十到上百个波段。波段的增加除了提高了信息量,还使得数据量成比例增加。这种数据量对计算机的性能提出了较高的要求,更多的是要求对处理者新的思路和方法。在接下来的文章中,我们将详细介绍高光谱数据的处理流程与方法,希望能在此过程中给读者以新的思考。


Hyperspectral light sheet microscopy | Nature Communications


ENVI (The Environment for Visualizing Images) 是美国Exelis Visual Information Solutions 公司的旗舰产品。它是由遥感领域的科学家采用交互式数据语言IDL (Interactive Data Language) 开发的遥感图像处理软件。ENVI已经广泛应用于科研、环境保护、气象、石油矿产勘探、农业、林业、医学、国防&安全、地球科学、公用设施管理、遥感工程、水利、海洋、测绘勘察和城市与区域规划等领域。

双击ENVI图标打开ENVI软件,可以看到ENVI软件的主界面由以下六个部分组成:①菜单栏、②工具栏、③图层管理窗格、④图像显示部分、⑤工具箱、⑥状态栏。



ENVI软件的布局如图所示,首先点击 依次点击①菜单栏->File->Open,在弹出的对话框中选取所需要的文件,



 一般的ENVI文件由两部分组成,文件本体和头文件(.hdr)。文件本体记录了文件的数据信息,而头文件中记录了关于这些数据信息的描述。使用记事本文件可以直接打开hdr文件,可以看到其中包括了:


  • 操作记录

  • Samples:栅格列数

  • Lines:栅格行数

  • Bands:波段数

  • Header offset:文件开头到实际数据起始位置的偏移量

  • File type:文件类型

  • Data type:数据存储类型,用数字表示bit位数

  • Interleave:存储顺序

  • Map Info:图像采用的投影系统参数,坐标系统及单位

  • Coordinate System String:详细的坐标系统信息

  • Wavelength:每个波段所对应的波长

两个文件应该放在同一目录下面,ENVI在读取时会自动进行关联。


    任选其中一个文件都可以打开该文件,但是ENVI对两个文件的处理方式有所不同。如果选择.hdr文件,ENVI会直接载入显示文件的第 一个波段,如下图所示。使用鼠标滚轮可以对图像进行缩放操作,使用②工具栏中的工具可以对图像进行拖动缩放等一系列操作。加载成功的图像会显示在③图层管理区,通过点击图像前面的勾选框来控制图像在④图像显示区的显示与否。



使用如果打开文件本体,ENVI会弹出Data Manager窗口



 该窗口包含三个部分,分别是①波段信息、②文件信息、③RGB波段选取。①中展示了所有波段的名称,②中是经过处理后的头文件信息,③是进行RGB合成的波段选取,点击三种颜色的方框后,在①中单击选择波段,选择完成后点击Load Data。如果只想要显示一个波段的灰度影响可以在①中选中目标波段后直接点击Load Greyscale。


RGB 合成象素值的彩色图,就是将三个波段的数据分别通过红、绿、蓝三个通道加载,然后进行渲染。


将多波段影像数据添加到地图中之后,可使用多波段栅格数据集中的任意三个可用波段的组合来创建 RGB 合成图。与仅处理一个波段相比,通过将多个波段共同显示为RGB 合成图通常可从数据集收集到更多信息。



来源:简书


    通常我们选取650nm、550nm和450nm分别赋给RGB通道进行合成以获得最 佳的显示效果。显示效果如下图:



在②工具栏中选择按钮,ENVI会在图上显示框标,并弹出光谱特征(Spectral Profile)窗口光谱特征窗口中显示了框标中心白点所在像元的光谱曲线。如下图所示:



点击光谱特征窗口中的    ,可以对光谱曲线进行一些操作,如平滑,计算NDVI,显示RGB波段所在位置等:





小结

    本文介绍了高光谱影像的基本原理以及简单的读取及可视化操作。使用ENVI软件可以实现大部分简单的高光谱数据处理。在接下来的教程中,我们将从植被指数提取、高光谱滤波、非监督分类与监督分类等方面介绍ENVI软件的使用。除此以外,我们还将介绍基于Python的高光谱处理,从编程角度介绍高光谱相关知识,以及高光谱数据与大数据处理的结合。


参考:

【1】百度百科

【2】 www.jianshu.com/p/d0765ee89b86



2023-01-10 13:08:36 515 0
Teledyne ISCO推出新一代SyriXus系列高压高精度柱塞泵

美国Teledyne ISCO公司即将推出新一代的SyriXus系列高压高精度无脉冲柱塞泵,型号包括1000X、500X、500XV、260X、65X,将会替代原 D系列高压高精度无脉冲柱塞泵,包括:1000D、500D、260D、100DX、65D。SyriXus系列在保持D系列高耐用性和高精度的同时,将会提供更高的压力及更多的配置选择。D系列柱塞泵截止订单时间为2021年12月31日,请已签订合同的用户尽快落实订货。

                                                                

ISCO 高压高精度无脉冲柱塞泵,已成为ding级产品,提供了无与伦比的精度和可靠性。可在广泛的操作范围内提供精确、可预设的流速和压力控制,不存在其它泵种所固有的脉冲或流动异常等情况。从研发、化学到石油、天然气、制药和塑料,ISCO 泵已成为各行业的最高标准,保持了技术精湛的核心DNA精髓。高度专业化的应用客户满意度是无与伦比的,ISCO 不断创新能够应对现在和将来的任何挑战。

 

 

Teledyne ISCO SyriXus 系列柱塞泵技术规格

型号及技术规格

1000X

500X

500XV *

260X

65X

容积(mL)

1015

507

507

266

68

流速范围(mL/min)

0.1-408

0.001-204

0.001-204

0.001-107

0.00001-25

压力范围

10-2000psi

0.7-137.9bar

10-5000psi

1-345bar

10-5000psi

1-345bar

10-9500psi

1-655bar

10-20000psi

1-1378bar

缸体材质

镍基合金

镍基合金

哈氏合金

镍基合金

镍基合金

哈氏合金

镍基合金

连续流动阀

气动

电动

气动(哈氏合金)

电动(哈氏合金)

气动阀(不锈钢)

气动(哈氏合金)

电动(哈氏合金)

不锈钢

单泵自动阀

电动

气动(哈氏合金)

电动(不锈钢)

气动(哈氏合金)

电动(不锈钢)

气动

(不锈钢)

手动阀

回填和排出

回填和排出

回填和排出

回填和排出

* 500XV具有45度入口易于清洗,3/8”入口易于泵入浆状或粘性材料


2021-09-30 13:17:18 713 0
武田高精度激光投线仪售后服务电话
 
2016-06-16 13:57:55 287 1
高精度激光位移传感器可以达到纳米级别吗?
 
2015-04-29 02:09:51 527 1
​高光谱遥感数据处理系列(二)基于高光谱数据的植被指数计算

高光谱遥感数据处理系列(二)

反射率与植被指数

来自地物反射/发射的光通过镜头被相机捕获,使得传感器被曝光。由于光电效应,传感器上的每个像素传感器上的电荷开始累计。经过相机芯片的转换,这些光信号以数字的形式存储下来,这些数字被称为DN值。


辐射亮度 (Radiance),简称辐亮度 , 指面辐射源在单位立体角 、 单位时间内 , 在某一垂直于辐射方向单位面积 (法向面积) 上辐射出的辐射能量 , 即辐射源在单位投影面积上 、 单位立体角内的辐射通量 。辐亮度是最常用的度量光强弱的物理量之一。辐亮度可以进一步用于反射率的计算。


DN值可以看作由辐亮度与相机属性主导的变量。去除DN值中由于相机属性引起的变化,将其转化为辐亮度的过程称为辐射定标。通常该过程由相机厂商进行处理,或者厂商会提供用于定标的关键参数。


物体反射的辐射能量占总辐射能量的百分比,称为反射率。不同物体的反射率也不同,这主要取决于物体本身的性质(表面状况),以及入射电磁波的波长和入射角度,反射率的大小范围总是小于等于1,利用反射率可以判断物体的性质。


在使用无人机进行实际观测时,通常使用地物辐亮度除以白板或反射布所在像元的辐亮度作为反射率。

从空间量化植被覆盖、生物化学、结构和功能是研究和理解全 球变化、生物多样性和农业的关键。实际上,遥感在很大程度上依赖于使用源自光谱反射率的植被指数 (Vegetation Indices, VI)。VI 是几个波段反射率的数学变换,旨在最 大限度地提高对特定生物物理现象(例如,绿度、含水量或光合作用活动)的敏感性,同时最 大限度地降低对土壤特性、太阳光照、大气条件和传感器观察等因素的敏感性。


典型植物的反射光谱。


植物光谱最显著的特这就是红光范围的强吸收与近红外区域的强反射,两个波段之间的快速上升波段称为红边。


红光波段的强吸收是由于植被叶绿素的吸收,而近红外波段的强反射是由于植被的叶片结构导致的。


通过两个波段进行差分或比值可以凸显出植被在这两个波段的反射特性的差别。同时,差分或比值运算可以去除两个波段中包含的背景信号及噪声。


不同的波段或组合形式侧重展现了不同的植被特性。植被指数是对地表植被状况的简单、有效和经验的度量。目前已经出现了上百种不同的植被指数。ENVI中包含了其中7类 27种植被指数。


主界面功能区


在主界面⑤工具箱中搜索栏中可以方便地对所有工具进行检索,输入 Vegetaton Indices Parameters ,打开该工具如下所示:



鼠标单击所需要的植被指数,然后点击 Choose 选择文件的存储位置。此外ENVI还提供了将数据存储到内存的选项 Memeory,但是这些数据在ENVI关闭后会被删除。所以选择存储到内存时,ENVI会弹出二次确认对话框,继续选中Memeory确认即可。


ENVI的帮助文件中详细展示了各种植被指数的公式及参考文献。在菜单栏 Help 中打开-> 在左侧 Contents 选项卡中的Vegetation Analysis。关于植被指数的发展和使用场景还可以参考 Xue J, Su B. Significant remote sensing vegetation indices: A review of developments and applications[J]. Journal of sensors, 2017.



在获取植被指数后,可以利用这些指数进行地表参数估算或者进一步进行实际应用,ENVI中提供了几种植被指数的实际应用工具,包括林木健康分析(Forest Health Vegetation Analysis)、农作物胁迫(Agricultural Stress Vegetation Analysis)、易燃性分布分析(Fire Fuel Vegetation analysis),以及植被抑 制(Vegetation Suppression)。


这些应用工具结合几类不同植被指数对植被进行评估,以林木健康分析为例,首先在主界面⑤中搜索栏中输入 Forest Health Vegetation Analysis ,双击打开林木健康分析工具:



该工具通过三类不同的植被指数:绿度指数,叶色素指数,冠层水分或光能利用率指数。ENVI内置了模型进行阈值筛选,综合分析多种指数,将植被的健康状况分为9种。


波段运算

如果需要使用内置植被指数以外的指数进行运算,可以使用ENVI中的Band Math工具。这里分别对窄波段和宽波段植被指数的计算进行介绍。


窄波段归一化植被指数:



首先在主界面⑤中搜索栏中输入 Band Math,双击打开波段运算工具:



在Band Math中输入所需要的表达式,这里需要注意的是,ENVI默认用b1,b2...来表示不同的变量,比如这里我们用到了两个波段680nm和800nm,分别用变量b1和b2来表示。在Enter an expression中输入(b2-b1)/(b2+b1),点击ok,会弹出变量与实际使用波段的匹配对话框。



首先在①中单击选择需要赋值的变量,接下来在②中选择所对应的波段(如果不同波段是分开存储的,选择Map Variable to Input File可以将整个文件赋给某个变量)。在有所变量选择完毕后,点击OK。结果如下图所示:



宽波段NDVI:

通常机载成像光谱仪的光谱分辨率可以达到亚纳米/纳米级。而常用的卫星数据如Landsat系列和MODIS产品的光谱分辨率较宽,针对这些卫星遥感产品开发的植被指数基本都是宽波段植被指数。为了使用机载成像光谱仪进行宽波段植被指数的计算需要先对波段进行聚合,这里我们以Landsat系列的宽波段为例进行手动宽波段NDVI计算(Vegetaton Indices Parameters中也提供了一些宽波段VI的计算,这里另外介绍手动波段聚合的操作方法)。


Landsat 9 的传感器如下所示:

  • Band 1 Visible (0.43 - 0.45 µm) 30-m.

  • Band 2 Visible (0.450 - 0.51 µm) 30-m.

  • Band 3 Visible (0.53 - 0.59 µm) 30-m.

  • Band 4 Red (0.64 - 0.67 µm) 30-m.

  • Band 5 Near-Infrared (0.85 - 0.88 µm) 30-m.


在⑤工具箱中搜索栏中Sum Data Parameters,打开波段聚合工具。



在①中选择输入文件,然后点击 Spectral Subset ,在弹出的波段选择窗格中,对要进行聚合的波段进行选取(按住Shift进行连续多选,按住Ctrl进行多选)。



点击OK进行确认。



Sum Data Parameters 提供了多种波段聚合函数,这里选择Mean函数进行聚合。依次对几个波段进行聚合后的,我们得到以下文件。



接下来可以用Band Math进行宽波段NDVI的计算,计算方法同上。


小结

自遥感领域出现以来,植被指数扮演着重要的角色,并且一直在发展完善。本文介绍了反射率和植被指数的概念,植被指数的原理,使用ENVI进行植被指数计算,以及手动窄/宽波段植被指数的计算。了解其背后的植物生理学知识,是正确使用这些指数的必要条件。



2023-02-03 15:37:09 444 0
激光收发模块哪个牌子好怎么使用?
摩泰 激光收发模块
2018-11-19 21:47:30 238 0
半导体激光模块功率衰减很快是什么原因
 
2011-04-13 05:40:34 619 2
高精度激光投线仪一直响是怎么回事
 
2015-04-27 06:34:53 397 1
高精度激光位移传感器的测量量程可达到多少?
 
2015-05-12 13:44:34 446 3
激光测距仪高精度红外线手持式电子测量仪怎么用
 
2018-12-06 04:49:55 324 0

1月突出贡献榜

推荐主页

最新话题