仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

Moku激光稳频仪Laserlock用于PDH激光稳频实验

泰初科技(天津)有限公司 2019-08-19 17:20:42 409  浏览
  • 激光锁定系统广泛用于控制并将激光器的频率与光学频率参考匹配(这通常是光学参考腔或原子跃迁)。这种系统对于高分辨率干涉测量、光谱系统,以及时间和频率标准至关重要。

    通过强制激光器和参考频率相等来锁定激光器一般两种情况:(1)锁定系统控制激光器频率且使其等于参考频率,这被称为频率稳定;(2)锁定系统迫使参考频率跟随激光频率,这被称为频率跟踪。无论是用于频率稳定还是频率跟踪,澳大利亚Liquid Instruments公司的Moku都可以实现高性能,高增益的激光锁定系统。

    Moku提供先进的设置、采集和诊断功能,使设置和表征激光锁定系统变得更加容易和快捷。此外,Moku Laserlock锁频功能可用于大多数激光器和频率参考比如PDH锁定(Pound-Drever Hall, PDH)、外差偏移锁定(Heterodyne offset phase locking)、RF锁定(RF locking)和抖动锁定(Dither locking)以及稳定连续波激光器的频率。

    激光锁定和PDH技术的基础知识

    任何激光锁定技术的核心都是测量并提供激光与频率参考之间差异或误差的测量。通常称为“误差信号”,该信号的质量Z终决定了整个锁定系统的精度和准确性。可以说,获得误差信号的Z精确方法之一是Pound-drever-Hall(PDH)技术。已经证明,在反馈系统中使用PDH误差信号可以非常精确地测量激光器或腔体的变化,从而将其用于吸收光谱和引力波检测等无数应用中。PDH误差信号技术有几个关键优势,例如:
    1、该技术可以精确地测量并提供了激光和共振腔之间的相位和频率差异
    2、该传感技术提供零交叉误差信号,当误差信号为零时代表其零频率差为零。
    3、假设所有信号处理都是以数字方式完成的,它避免了模拟电子和解调电路中产生的低频噪声。

    这些优点难免需要付出一些代价。为了获得频率/相位的这种精确测量,PDH技术应用射频调制和解调技术。这大大增加了信号处理系统的复杂性,也使光学系统变得复杂。但是,一旦理解,与PDH系统的优点相比,这些复杂性是微不足道的。

    使用Moku:激光锁频/稳频仪器实现激光锁定

    Moku:激光锁频/稳频大大简化了通常操作和使用PDH锁定系统的复杂程度。图1示出了PDH激光锁定系统的示例。该装置使用固态Nd:YAG NPRO激光器,其已经与一个中等精细度光学腔准直并模式匹配。随后使用Moku:激光锁频/稳频产生将激光锁定到腔的谐振频率所需的所有信号。

     


    图1:PDH激光锁定系统的示例


    锁定激光器包括:
    1、设置系统(包括准直)。
    2、调制激光
    3、寻找共振点
    4、获得误差信号
    5、打开反馈
    6、优化锁定

    系统设置

    为了使系统Z佳地工作,需要确保激光器的出射光与腔的光轴良好准直,并且激光器的模式与谐振器的空间模式很好地匹配。重要的是要注意,未准直或模式不匹配会导致锁定性能降低,或者在极端情况下,系统根本不工作。Z后,使用两个光电探测器监测系统;一个光电探测器接收从腔体反射回来的光,另一个接收穿过腔体的光。

    连接Moku:Lab输出端

    为了应用PDH成功锁腔,需要生成几个信号。
    1、调制信号:发送到EOM以产生相位调制边带。
    2、主要反馈信号:在这种情况下反馈到激光器的PZT频率控制器。为了驱动激光器的PZT,需要使用高压放大器(HV amp)。
    3、次反馈信号(可选):可通过温度来调节激光频率,温度反馈的动态调控范围较广,但速度较慢。
    在这种情况下,调制信号和次反馈信号在Moku:Lab的输出2上生成,并使用Bias-Tee分离。


    连接Moku:Lab输入端

    光电探测器接收到的反射信号通常包含了产生反馈信号所需的所有信息,将其与输入1连接并作为主要的信号输入通道。第二输入通道可以用来监控任何辅助信号。
    1、输入1用作大多数信号处理的主要通道。在该系统中,将光电探测器AC输出连接到Moku:Laser Lock Box的输入1。
    2、将透射光信号的直流分量连接到输入2,尽管不是必需的,但其有助于识别和优化锁定系统中的特征。

    调制激光

    在这种情况下的相位调制是通过向EOM施加正弦电压信号来实现的。调制信号可以辅助振荡器功能来产生。对于该系统,我们将使用10 MHz调制。
    1、将辅助振荡器设置为10 MHz。
    2、设置辅助振荡器的幅度。务必选择EOM规格范围内的电压。在这种情况下,我们将幅度设置为100 mV。
    3、选择Aux Oscillator输出。在此示例中,将Aux示波器设置为输出2。
    4、打开输出。

    扫描激光频率并找到共振频率

    扫描激光频率有助于表征和优化锁定信号。
    Moku:Laser Lock Box附带扫描功能。在此示例中,我们将对扫描发生器进行设置,使其输出一个信号并通过输出1传递给PZT传动装置。步骤如下:
    1、将“扫描”设置为三角波
    2、将幅度设置为500 mV
    3、选择扫描信号的输出端,在此示例中为输出1
    4、打开输出

     

    图2:辅助振荡器用于驱动EOM并创建相位调制边带。


    使系统共振信号居中

    为了使激光锁定更顺利,我们通常可以在扫描中将共振信号调整到扫描信号的ZY,后续可以通过调整温度控制器的偏移量来实现。
    o    调整温度偏移,直到扫描ZX共振频率出现在扫描信号的零值附近。


    获取并优化误差信号

    为了获得误差信号,从光电探测器接收的RF信号需要用本地振荡器解调。选择本地振荡器的正确相位对于优化误差信号至关重要。如下:
    o    在观察误差信号的同时调整本地振荡器的相位。
     

    图3:通道A和B分别显示腔的透射响应和经过恢复的误差信号。


    手动锁定激光

    1、调整共振信号至扫描的ZY.
    2、设置高频PID控制器。(此处可以仅先设置积分器频率在~10 Hz,因为后续可以对响应进一步优化)
    3、打开PID控制器
    4、缓慢降低扫描幅度,直到激光功率达到Z大值。
    5、关闭扫描

    使用Tap来锁定

    1、调整共振信号至扫描的ZY。
    2、设置高频PID控制器。(此处可以仅先设置积分器频率在~10 Hz,因为后续可以对响应进一步优化)
    3、选择Tap为锁定模式
    4、选择需要锁定共振点
     注意:确保反馈的方向正确。

    调整和优化锁定

    一旦系统锁定,我们可以根据需要优化锁定。这通常意味着调整PID控制器的增益。
    要执行此操作,请打开PID控制器菜单:
    1、稍微增加比例增益,直到系统开始振荡。
    2、稍微降低比例增益,直到系统停止振荡
    3、对积分器和微分器重复此操作(如有必要)
     

    图4:当激光器锁定时,透射光的功率(通道A)将处于其恒定的Z大值。误差信号(通道B)也将保持为零。

    除了激光锁频/稳频,Moku:Lab还集成了示波器、频谱分析仪、波形发生器、相位表、数据记录器、锁相放大器、PID控制器、波特分析仪、数字滤

    波器、任意波形发生器、FIR滤波器生成器十二个专业仪器。


      

    稳定的激光频率对专业测量或者时间/频率标准领域中的许多系统都至关重要。Moku:Lab激光锁频/稳频是一个高性能激光锁定系统,具备锁定诊断和一些自动化程序,可以使用各种激光锁定技术锁定激光,该系统可用于大多数激光器和频率参考。

    主要特色
    (1)本机振荡器选项:内部LO、PLL LO和外部LO
    (2)独立快速PID控制器
    (3)独立慢速PID控制器
    (4)扫描发生器波形:锯齿波和三角波
    (5)扫描频率:1 mHz – 14 MHz
    (6)可配置的滤波器类型:Butterworth、Chebyshev、Inverse Chebyshev、Elliptic、Gaussian、Bessel、Legendre。
    (7)监测信号选项:输入、输出、误差信号、解调信号、扫描信号等
    (8)点击即可锁定
    (9)AC/DC输入耦合
    (10)50 Ω/1 MΩ输入阻抗
     
    主要特点

    (1)信号处理框图
    (2)使用内部和外部本机振荡器解调信号
    (3)锯齿波或三角波共振扫描
    (4)使用内置示波器观测在信号处理过程中不同位置的信号
    (5)使用“点击-锁定”功能快速锁定到误差信号的任一零交叉点。
    (6)高达四阶低通IIR无限冲激响应滤波器解调信号
    (7)可单独配置的高带宽、低带宽PID控制器用于高频、低频反馈
    (8)使用“范围内扫描锁定”功能观测与扫描电压有关的信号

    典型参数
    (1)解调高达200 MHz的频率,频率分辨率3.55 μHz
    (2)生成高达200 MHz的解调信号
    (3)扫描高达1 MHz锯齿波或三角波共振信号
    (4)以31.25 MSa/s采样率生成控制信号
    (5)以高达1 MSa/s持续采集数据
    (6)AC / DC输入耦合
    (7)50 Ω / 1 MΩ输入阻抗
    (8)可在2.081 kHz - 28.13 MHz之间调整低通滤波器截止频率

    相关参考介绍


    Moku:Lab多功能测量仪之激光锁频/稳频功能介绍,请点击 这里


    Moku:Lab多功能测量仪介绍,请点击 这里


    Moku Laserlock激光稳频仪功能介绍英文版,请点击 这里


参与评论

全部评论(0条)

热门问答

Moku激光稳频仪Laserlock用于PDH激光稳频实验

激光锁定系统广泛用于控制并将激光器的频率与光学频率参考匹配(这通常是光学参考腔或原子跃迁)。这种系统对于高分辨率干涉测量、光谱系统,以及时间和频率标准至关重要。

通过强制激光器和参考频率相等来锁定激光器一般两种情况:(1)锁定系统控制激光器频率且使其等于参考频率,这被称为频率稳定;(2)锁定系统迫使参考频率跟随激光频率,这被称为频率跟踪。无论是用于频率稳定还是频率跟踪,澳大利亚Liquid Instruments公司的Moku都可以实现高性能,高增益的激光锁定系统。

Moku提供先进的设置、采集和诊断功能,使设置和表征激光锁定系统变得更加容易和快捷。此外,Moku Laserlock锁频功能可用于大多数激光器和频率参考比如PDH锁定(Pound-Drever Hall, PDH)、外差偏移锁定(Heterodyne offset phase locking)、RF锁定(RF locking)和抖动锁定(Dither locking)以及稳定连续波激光器的频率。

激光锁定和PDH技术的基础知识

任何激光锁定技术的核心都是测量并提供激光与频率参考之间差异或误差的测量。通常称为“误差信号”,该信号的质量Z终决定了整个锁定系统的精度和准确性。可以说,获得误差信号的Z精确方法之一是Pound-drever-Hall(PDH)技术。已经证明,在反馈系统中使用PDH误差信号可以非常精确地测量激光器或腔体的变化,从而将其用于吸收光谱和引力波检测等无数应用中。PDH误差信号技术有几个关键优势,例如:
1、该技术可以精确地测量并提供了激光和共振腔之间的相位和频率差异
2、该传感技术提供零交叉误差信号,当误差信号为零时代表其零频率差为零。
3、假设所有信号处理都是以数字方式完成的,它避免了模拟电子和解调电路中产生的低频噪声。

这些优点难免需要付出一些代价。为了获得频率/相位的这种精确测量,PDH技术应用射频调制和解调技术。这大大增加了信号处理系统的复杂性,也使光学系统变得复杂。但是,一旦理解,与PDH系统的优点相比,这些复杂性是微不足道的。

使用Moku:激光锁频/稳频仪器实现激光锁定

Moku:激光锁频/稳频大大简化了通常操作和使用PDH锁定系统的复杂程度。图1示出了PDH激光锁定系统的示例。该装置使用固态Nd:YAG NPRO激光器,其已经与一个中等精细度光学腔准直并模式匹配。随后使用Moku:激光锁频/稳频产生将激光锁定到腔的谐振频率所需的所有信号。

 


图1:PDH激光锁定系统的示例


锁定激光器包括:
1、设置系统(包括准直)。
2、调制激光
3、寻找共振点
4、获得误差信号
5、打开反馈
6、优化锁定

系统设置

为了使系统Z佳地工作,需要确保激光器的出射光与腔的光轴良好准直,并且激光器的模式与谐振器的空间模式很好地匹配。重要的是要注意,未准直或模式不匹配会导致锁定性能降低,或者在极端情况下,系统根本不工作。Z后,使用两个光电探测器监测系统;一个光电探测器接收从腔体反射回来的光,另一个接收穿过腔体的光。

连接Moku:Lab输出端

为了应用PDH成功锁腔,需要生成几个信号。
1、调制信号:发送到EOM以产生相位调制边带。
2、主要反馈信号:在这种情况下反馈到激光器的PZT频率控制器。为了驱动激光器的PZT,需要使用高压放大器(HV amp)。
3、次反馈信号(可选):可通过温度来调节激光频率,温度反馈的动态调控范围较广,但速度较慢。
在这种情况下,调制信号和次反馈信号在Moku:Lab的输出2上生成,并使用Bias-Tee分离。


连接Moku:Lab输入端

光电探测器接收到的反射信号通常包含了产生反馈信号所需的所有信息,将其与输入1连接并作为主要的信号输入通道。第二输入通道可以用来监控任何辅助信号。
1、输入1用作大多数信号处理的主要通道。在该系统中,将光电探测器AC输出连接到Moku:Laser Lock Box的输入1。
2、将透射光信号的直流分量连接到输入2,尽管不是必需的,但其有助于识别和优化锁定系统中的特征。

调制激光

在这种情况下的相位调制是通过向EOM施加正弦电压信号来实现的。调制信号可以辅助振荡器功能来产生。对于该系统,我们将使用10 MHz调制。
1、将辅助振荡器设置为10 MHz。
2、设置辅助振荡器的幅度。务必选择EOM规格范围内的电压。在这种情况下,我们将幅度设置为100 mV。
3、选择Aux Oscillator输出。在此示例中,将Aux示波器设置为输出2。
4、打开输出。

扫描激光频率并找到共振频率

扫描激光频率有助于表征和优化锁定信号。
Moku:Laser Lock Box附带扫描功能。在此示例中,我们将对扫描发生器进行设置,使其输出一个信号并通过输出1传递给PZT传动装置。步骤如下:
1、将“扫描”设置为三角波
2、将幅度设置为500 mV
3、选择扫描信号的输出端,在此示例中为输出1
4、打开输出

 

图2:辅助振荡器用于驱动EOM并创建相位调制边带。


使系统共振信号居中

为了使激光锁定更顺利,我们通常可以在扫描中将共振信号调整到扫描信号的ZY,后续可以通过调整温度控制器的偏移量来实现。
o    调整温度偏移,直到扫描ZX共振频率出现在扫描信号的零值附近。


获取并优化误差信号

为了获得误差信号,从光电探测器接收的RF信号需要用本地振荡器解调。选择本地振荡器的正确相位对于优化误差信号至关重要。如下:
o    在观察误差信号的同时调整本地振荡器的相位。
 

图3:通道A和B分别显示腔的透射响应和经过恢复的误差信号。


手动锁定激光

1、调整共振信号至扫描的ZY.
2、设置高频PID控制器。(此处可以仅先设置积分器频率在~10 Hz,因为后续可以对响应进一步优化)
3、打开PID控制器
4、缓慢降低扫描幅度,直到激光功率达到Z大值。
5、关闭扫描

使用Tap来锁定

1、调整共振信号至扫描的ZY。
2、设置高频PID控制器。(此处可以仅先设置积分器频率在~10 Hz,因为后续可以对响应进一步优化)
3、选择Tap为锁定模式
4、选择需要锁定共振点
 注意:确保反馈的方向正确。

调整和优化锁定

一旦系统锁定,我们可以根据需要优化锁定。这通常意味着调整PID控制器的增益。
要执行此操作,请打开PID控制器菜单:
1、稍微增加比例增益,直到系统开始振荡。
2、稍微降低比例增益,直到系统停止振荡
3、对积分器和微分器重复此操作(如有必要)
 

图4:当激光器锁定时,透射光的功率(通道A)将处于其恒定的Z大值。误差信号(通道B)也将保持为零。

除了激光锁频/稳频,Moku:Lab还集成了示波器、频谱分析仪、波形发生器、相位表、数据记录器、锁相放大器、PID控制器、波特分析仪、数字滤

波器、任意波形发生器、FIR滤波器生成器十二个专业仪器。


  

稳定的激光频率对专业测量或者时间/频率标准领域中的许多系统都至关重要。Moku:Lab激光锁频/稳频是一个高性能激光锁定系统,具备锁定诊断和一些自动化程序,可以使用各种激光锁定技术锁定激光,该系统可用于大多数激光器和频率参考。

主要特色
(1)本机振荡器选项:内部LO、PLL LO和外部LO
(2)独立快速PID控制器
(3)独立慢速PID控制器
(4)扫描发生器波形:锯齿波和三角波
(5)扫描频率:1 mHz – 14 MHz
(6)可配置的滤波器类型:Butterworth、Chebyshev、Inverse Chebyshev、Elliptic、Gaussian、Bessel、Legendre。
(7)监测信号选项:输入、输出、误差信号、解调信号、扫描信号等
(8)点击即可锁定
(9)AC/DC输入耦合
(10)50 Ω/1 MΩ输入阻抗
 
主要特点

(1)信号处理框图
(2)使用内部和外部本机振荡器解调信号
(3)锯齿波或三角波共振扫描
(4)使用内置示波器观测在信号处理过程中不同位置的信号
(5)使用“点击-锁定”功能快速锁定到误差信号的任一零交叉点。
(6)高达四阶低通IIR无限冲激响应滤波器解调信号
(7)可单独配置的高带宽、低带宽PID控制器用于高频、低频反馈
(8)使用“范围内扫描锁定”功能观测与扫描电压有关的信号

典型参数
(1)解调高达200 MHz的频率,频率分辨率3.55 μHz
(2)生成高达200 MHz的解调信号
(3)扫描高达1 MHz锯齿波或三角波共振信号
(4)以31.25 MSa/s采样率生成控制信号
(5)以高达1 MSa/s持续采集数据
(6)AC / DC输入耦合
(7)50 Ω / 1 MΩ输入阻抗
(8)可在2.081 kHz - 28.13 MHz之间调整低通滤波器截止频率

相关参考介绍


Moku:Lab多功能测量仪之激光锁频/稳频功能介绍,请点击 这里


Moku:Lab多功能测量仪介绍,请点击 这里


Moku Laserlock激光稳频仪功能介绍英文版,请点击 这里


2019-08-19 17:20:42 409 0
Moku激光稳频仪Laserlock用于PDH激光锁频实验

激光锁定系统广泛用于控制并将激光器的频率与光学频率参考匹配(这通常是光学参考腔或原子跃迁)。这种系统对于高分辨率干涉测量、光谱系统,以及时间和频率标准至关重要。

通过强制激光器和参考频率相等来锁定激光器一般两种情况:(1)锁定系统控制激光器频率且使其等于参考频率,这被称为频率稳定;(2)锁定系统迫使参考频率跟随激光频率,这被称为频率跟踪。无论是用于频率稳定还是频率跟踪,澳大利亚Liquid Instruments公司的Moku都可以实现高性能,高增益的激光锁定系统。

Moku提供先进的设置、采集和诊断功能,使设置和表征激光锁定系统变得更加容易和快捷。此外,Moku Laserlock锁频功能可用于大多数激光器和频率参考比如PDH锁定(Pound-Drever Hall, PDH)、外差偏移锁定(Heterodyne offset phase locking)、RF锁定(RF locking)和抖动锁定(Dither locking)以及稳定连续波激光器的频率。

激光锁定和PDH技术的基础知识

任何激光锁定技术的核心都是测量并提供激光与频率参考之间差异或误差的测量。通常称为“误差信号”,该信号的质量Z终决定了整个锁定系统的精度和准确性。可以说,获得误差信号的Z精确方法之一是Pound-drever-Hall(PDH)技术。已经证明,在反馈系统中使用PDH误差信号可以非常精确地测量激光器或腔体的变化,从而将其用于吸收光谱和引力波检测等无数应用中。PDH误差信号技术有几个关键优势,例如:
1、该技术可以精确地测量并提供了激光和共振腔之间的相位和频率差异
2、该传感技术提供零交叉误差信号,当误差信号为零时代表其零频率差为零。
3、假设所有信号处理都是以数字方式完成的,它避免了模拟电子和解调电路中产生的低频噪声。

这些优点难免需要付出一些代价。为了获得频率/相位的这种精确测量,PDH技术应用射频调制和解调技术。这大大增加了信号处理系统的复杂性,也使光学系统变得复杂。但是,一旦理解,与PDH系统的优点相比,这些复杂性是微不足道的。

使用Moku:激光锁频/稳频仪器实现激光锁定

Moku:激光锁频/稳频大大简化了通常操作和使用PDH锁定系统的复杂程度。图1示出了PDH激光锁定系统的示例。该装置使用固态Nd:YAG NPRO激光器,其已经与一个中等精细度光学腔准直并模式匹配。随后使用Moku:激光锁频/稳频产生将激光锁定到腔的谐振频率所需的所有信号。

 


图1:PDH激光锁定系统的示例


锁定激光器包括:
1、设置系统(包括准直)。
2、调制激光
3、寻找共振点
4、获得误差信号
5、打开反馈
6、优化锁定

系统设置

为了使系统Z佳地工作,需要确保激光器的出射光与腔的光轴良好准直,并且激光器的模式与谐振器的空间模式很好地匹配。重要的是要注意,未准直或模式不匹配会导致锁定性能降低,或者在极端情况下,系统根本不工作。Z后,使用两个光电探测器监测系统;一个光电探测器接收从腔体反射回来的光,另一个接收穿过腔体的光。

连接Moku:Lab输出端

为了应用PDH成功锁腔,需要生成几个信号。
1、调制信号:发送到EOM以产生相位调制边带。
2、主要反馈信号:在这种情况下反馈到激光器的PZT频率控制器。为了驱动激光器的PZT,需要使用高压放大器(HV amp)。
3、次反馈信号(可选):可通过温度来调节激光频率,温度反馈的动态调控范围较广,但速度较慢。
在这种情况下,调制信号和次反馈信号在Moku:Lab的输出2上生成,并使用Bias-Tee分离。


连接Moku:Lab输入端

光电探测器接收到的反射信号通常包含了产生反馈信号所需的所有信息,将其与输入1连接并作为主要的信号输入通道。第二输入通道可以用来监控任何辅助信号。
1、输入1用作大多数信号处理的主要通道。在该系统中,将光电探测器AC输出连接到Moku:Laser Lock Box的输入1。
2、将透射光信号的直流分量连接到输入2,尽管不是必需的,但其有助于识别和优化锁定系统中的特征。

调制激光

在这种情况下的相位调制是通过向EOM施加正弦电压信号来实现的。调制信号可以辅助振荡器功能来产生。对于该系统,我们将使用10 MHz调制。
1、将辅助振荡器设置为10 MHz。
2、设置辅助振荡器的幅度。务必选择EOM规格范围内的电压。在这种情况下,我们将幅度设置为100 mV。
3、选择Aux Oscillator输出。在此示例中,将Aux示波器设置为输出2。
4、打开输出。

扫描激光频率并找到共振频率

扫描激光频率有助于表征和优化锁定信号。
Moku:Laser Lock Box附带扫描功能。在此示例中,我们将对扫描发生器进行设置,使其输出一个信号并通过输出1传递给PZT传动装置。步骤如下:
1、将“扫描”设置为三角波
2、将幅度设置为500 mV
3、选择扫描信号的输出端,在此示例中为输出1
4、打开输出

 

图2:辅助振荡器用于驱动EOM并创建相位调制边带。


使系统共振信号居中

为了使激光锁定更顺利,我们通常可以在扫描中将共振信号调整到扫描信号的ZY,后续可以通过调整温度控制器的偏移量来实现。
o    调整温度偏移,直到扫描ZX共振频率出现在扫描信号的零值附近。


获取并优化误差信号

为了获得误差信号,从光电探测器接收的RF信号需要用本地振荡器解调。选择本地振荡器的正确相位对于优化误差信号至关重要。如下:
o    在观察误差信号的同时调整本地振荡器的相位。
 

图3:通道A和B分别显示腔的透射响应和经过恢复的误差信号。


手动锁定激光

1、调整共振信号至扫描的ZY.
2、设置高频PID控制器。(此处可以仅先设置积分器频率在~10 Hz,因为后续可以对响应进一步优化)
3、打开PID控制器
4、缓慢降低扫描幅度,直到激光功率达到Z大值。
5、关闭扫描

使用Tap来锁定

1、调整共振信号至扫描的ZY。
2、设置高频PID控制器。(此处可以仅先设置积分器频率在~10 Hz,因为后续可以对响应进一步优化)
3、选择Tap为锁定模式
4、选择需要锁定共振点
 注意:确保反馈的方向正确。

调整和优化锁定

一旦系统锁定,我们可以根据需要优化锁定。这通常意味着调整PID控制器的增益。
要执行此操作,请打开PID控制器菜单:
1、稍微增加比例增益,直到系统开始振荡。
2、稍微降低比例增益,直到系统停止振荡
3、对积分器和微分器重复此操作(如有必要)
 

图4:当激光器锁定时,透射光的功率(通道A)将处于其恒定的Z大值。误差信号(通道B)也将保持为零。

除了激光锁频/稳频,Moku:Lab还集成了示波器、频谱分析仪、波形发生器、相位表、数据记录器、锁相放大器、PID控制器、波特分析仪、数字滤

波器、任意波形发生器、FIR滤波器生成器十二个专业仪器。


  

稳定的激光频率对专业测量或者时间/频率标准领域中的许多系统都至关重要。Moku:Lab激光锁频/稳频是一个高性能激光锁定系统,具备锁定诊断和一些自动化程序,可以使用各种激光锁定技术锁定激光,该系统可用于大多数激光器和频率参考。

主要特色
(1)本机振荡器选项:内部LO、PLL LO和外部LO
(2)独立快速PID控制器
(3)独立慢速PID控制器
(4)扫描发生器波形:锯齿波和三角波
(5)扫描频率:1 mHz – 14 MHz
(6)可配置的滤波器类型:Butterworth、Chebyshev、Inverse Chebyshev、Elliptic、Gaussian、Bessel、Legendre。
(7)监测信号选项:输入、输出、误差信号、解调信号、扫描信号等
(8)点击即可锁定
(9)AC/DC输入耦合
(10)50 Ω/1 MΩ输入阻抗
 
主要特点

(1)信号处理框图
(2)使用内部和外部本机振荡器解调信号
(3)锯齿波或三角波共振扫描
(4)使用内置示波器观测在信号处理过程中不同位置的信号
(5)使用“点击-锁定”功能快速锁定到误差信号的任一零交叉点。
(6)高达四阶低通IIR无限冲激响应滤波器解调信号
(7)可单独配置的高带宽、低带宽PID控制器用于高频、低频反馈
(8)使用“范围内扫描锁定”功能观测与扫描电压有关的信号

典型参数
(1)解调高达200 MHz的频率,频率分辨率3.55 μHz
(2)生成高达200 MHz的解调信号
(3)扫描高达1 MHz锯齿波或三角波共振信号
(4)以31.25 MSa/s采样率生成控制信号
(5)以高达1 MSa/s持续采集数据
(6)AC / DC输入耦合
(7)50 Ω / 1 MΩ输入阻抗
(8)可在2.081 kHz - 28.13 MHz之间调整低通滤波器截止频率

相关参考介绍


Moku:Lab多功能测量仪之激光锁频/稳频功能介绍,请点击 这里


Moku:Lab多功能测量仪介绍,请点击 这里


Moku Laserlock激光稳频仪功能介绍英文版,请点击 这里


2019-08-19 17:23:48 690 0
Moku:Lab测量仪中锁相放大器用于激光稳频的相位锁定实验

Moku:Lab可用于使用外差检测和主动反馈来稳定两个激光器的相对频率和相位。

 

考虑以下光学系统,其中主激光器发出的激光与从激光器发出的激光发生干涉,产生频差信号,该频差信号通过光电探测器后转换为差频的电压信号。该频差信号可使用称为偏移锁相技术锁定两个激光器的相对相位,该技术可以使用Moku:Lab多功能测量仪上的锁定放大器。

偏置锁定以一定的偏置频率稳定两个或更多个激光器的相对相位。在原理上类似于锁相环的操作,其主要功能是检测两个振荡器之间的相位误差并更新其中一个振荡器的相位,使得它们的瞬时相位误差为零。

 

Moku:Lab锁相放大器的双相解调器产生的信号与输入信号的相位成比例,该输入信号的相位是相对于偏移频率的参考振荡。误差信号可以路由到专用的PID控制器,以产生控制信号,从而驱动从激光器的频率(或相位)。在大多数情况下,激光的频率可以通过压电换能器(PZT)或电流来控制,也可以使用其他类型的致动器包括电、热和声光调制器,但这里不考虑这些技术。

 

Moku:Lab连接到光学系统

1、 将光电探测器的输出连接到Moku:LabIn 1

2、 Moku:LabOut 1连接到激光器的频率致动器PZT上。您可能希望在Moku:Lab测量仪和激光器之间添加一个低通滤波器,以YZ噪声或提供高于特定频率的额外积分。

 

配置Moku:Lab进行偏移相位锁定

1、 Moku:Lab测量仪的iPad应用程序上启动锁相放大器

2、 按界面右上角的高级设置图标,选择内部解调,将辅助输出设置为本地振荡器,将PID控制器设置为主输出。

3、 界面现在看起来是这样的:

4、 按程序框图左侧的“In 1”图标,配置系统的输入设置(例如,DC耦合,50Ω输入阻抗和0 dB输入增益)

Tip:增益设置用于Z大化输入信号的动态范围。如果输入信号介于60 mVpp1 Vpp之间,请选择0 dB增益。如果信号在5 mVpp60 mVpp之间,请选择+24 dB增益。

 

5、 将内部参考的解调频率设置为所需的偏移频率。Moku:Lab测量仪支持高达200 MHz的偏移频率,但是这个值可能会受到光电探测器带宽的限制。

6、 将低通滤波器截止频率设置为大约100 kHz。该值将根据反馈环路的闭环带宽而变化。

7、 通过点击滤波器下方的蓝色6 dB文本,将滤波器斜率设置为12 dB/octave

8、 将解调器设置为R/θ模式,然后点击蓝色“gate”将相位θ连接到输出output

9、 Z后,根据系统的特定要求配置PID控制器。

您选择的特定增益轮廓线将在很大程度上依赖于多个因素,包括:

(1)     致动器的带宽(例如,对于PZT,可以高达100s of kHz

(2)     致动器的响应速度(例如,对于PZT,可以是MHz/Volt的量级)

(3)     反馈环路中的外部滤波器(例如,Moku:Lab测量仪的DAC输出和致动器输入之间的低通滤波器)

(4)     通过系统的总传播延迟

 

通过测量系统中不同元件的传递函数可以简化调节控制器的增益,对于某些组件(例如滤波器),尽管可以从数据表中查看大多数信息例如以Hz/Volt为单位的致动器带宽和响应度,但是您可以使用Moku:Lab测量仪的伯德分析仪(Bode Analyzer)进行测量。

 

在光电探测器上产生拍频信号

 

为了抵消相位锁定的两个激光器,它们的频率必须首先足够接近,以便当在光电探测器上受到干涉时产生可见的拍频。这实际上可能难以实现,因为激光器通常对温度非常敏感,这意味着当在不同温度下操作时,两个相同的激光器的频率可以相差高达10s of GHz。幸运的是,大多数激光器都具有热致动器,可用于多个GHz的粗调频率控制。该特征可用于将两个激光器的频率调节到光电探测器的带宽内以产生可见的拍频信号。

 

检查两个激光器的频率是否在光电探测器范围内的一种方法是使用Moku:Lab测量仪的频谱分析仪,其允许您观察250 MHz范围内的拍频频率。

 

1、 首先,启动Moku:Lab测量仪上的Spectrum Analyzer仪器并检查光电探测器输出是否连接到Moku:Lab测量仪上的In 1

2、 配置系统的输入设置(例如,DC耦合、50Ω输入阻抗和0 dB输入增益)

3、 将频率跨度设置为250 MHz,将分辨率带宽设置为Min,将Window设置为Hanning。在此配置中,您将能够看到光电探测器带宽内出现的任何拍频信号(假设它小于250 MHz)。

Tip:如果光电探测器的带宽为50 MHz,则应将跨度设置为100 MHz,起始频率为0 Hz,因为它不太可能出现在100 MHz以上。

4、 慢慢调节其中一个激光器的温度。重要的是你不要太快的改变激光器温度,因为热调谐系数超过每°KGHz,并且当你将激光器的频率转得太快,以至于当拍频信号在光电探测器的带宽范围内时,你无法观察到它。

5、 当两个激光器的频率在光电探测器的带宽范围内时,您应该会在频谱分析仪的显示屏上看到一个峰值移动。提高激光温度通常会降低激光频率,因此,如果您一直提高激光温度,那么当拍频信号可见时,应该会看到拍频频率降低。

 

当拍频频率达到0 Hz时,它会突然出现增加。这是因为频谱分析仪是单边的,意味着负拍频频率似乎是正的。

重要的是,拍频频率随温度的升高而降低(反之亦然),因为这表明频率差是正的。如果频率差是负的,则需要反转到PZT的反馈控制信号。

 

6、 当看到拍频信号时,等待激光器温度稳定(可能需要半个小时)才能尝试使用锁相放大器将激光器锁定在一起。

Note:如果没有专门的热控制,两个自由运转的激光器不可能在长时间内保持在彼此的范围内。虽然快速(PZT或电流)致动器会在短期内校正由温度漂移引起的任何频率误差,但它们固有地限制在一定范围内(通常Z好是几百MHz)并且无法校正因温度的随机波动而产生的较大的频率误差。


2019-08-19 17:21:08 622 0
Moku:Lab多功能测量仪之激光锁频/稳频功能

稳定的激光频率对专业测量或者时间/频率标准领域中的许多系统都至关重要。Moku:Lab激光锁频/稳频是一个高性能激光锁定系统,具备锁定诊断和一些自动化程序,可以使用各种激光锁定技术锁定激光,该系统可用于大多数激光器和频率参考。


PDH 锁定技术基本原理图示


主要特色


·       Local oscillator options本机振荡器选项

o   internal LO

o   PLL LO

o   external LO

·       Single Fast PID 独立高频PID

·       Single Slow PID独立低频PID

·       Scan generator 扫描发生器

o   triangular 三角波

o   sawtooth锯齿波

·       auxiliary sine gen辅助正弦信号发生器

·       configurable low pass filter (2 x SOS)可配置的低通滤波器

·       Monitoring options监测选项

o   Inputs输入

o   Outputs输出

o   error signal误差信号

o   demodulation解调

o   scan扫描

o   aux sine辅助正弦

·       conditional triggering条件触发

·       tap to lock点击即可锁定

·       scope scan lock - locks axis to scan for scanning ease范围内扫描锁定

 

主要特点

·       Block diagram view of the signal processing chain信号处理框图

·       Demodulate signals with internal or external local oscillator使用内部和外部本机振荡器解调信号

·       Scan resonances with sawtooth or triangle waveforms 扫描锯齿波或三角波共振

·       Observe signals at different locations in the signal processing chain using an integrated oscilloscope使用内置示波器观测在信号处理过程中不同位置的信号

·       Quickly lock to any zero-crossing in the error signal using the ‘Tap-to-Lock’ feature  使用“点击-锁定功能快速锁定到误差信号的任一零交叉点。

·       Low-pass filter demodulated signals with up to fourth order infinite-impulse response filters低通滤波器即高达四阶无限冲激响应滤波器解调信号

·       Individually configure high- and low-bandwidth PID controllers for fast and slow feedback可单独配置的高带宽、低带宽PID控制器用于高频、低频反馈

·       Observe signals with respect to the scanning voltage using the ‘Scope-Scan Lock’ feature使用范围内扫描锁定功能观测与扫描电压有关的信号


Key Specifications典型参数

·       Demodulate with frequencies up to 200 MHz with 3.55 µHz resolution

    解调高达200 MHz频率,频率分辨率3.55 µHz

·       Generate modulation signals at up to 200 MHz

    生成高达200 MHz的解调信号

·       Scan resonances with sawtooth or triangle waveforms at up to 1 MHz

    扫描高达1 MHz锯齿波或三角波共振

·       Generate control signals at a sampling rates of 31.25 MSa/s

    以31.25 MSa/s采样率生成控制信号

·       Continuously acquire data at up to 1 MSa/s

    以高达1 MSa/s持续采集数据

·       AC / DC input coupling

    AC / DC输入耦合

·       50 Ω / 1 MΩ input impedance

    50 Ω / 1 MΩ输入阻抗

·       Adjust the low-pass filter cut-off frequency between to 2.081 kHz and 28.13 MHz

    可在2.081 kHz - 28.13 MHz之间调整低通滤波器截止频率


    更多详细介绍,请参见:https://www.liquidinstruments.com/


2019-08-19 17:24:22 426 0
固体激光激励源能用频闪氙灯吗
本人想DIY固体激光器 晶体和谐振腔没问题 就是激励源问题 网上卖的专用激光氙灯电源都很贵而且都是市电用 功率低点没事 就是不知道能不能用 就像相机那种U形的闪光灯泡能用吗 求解
2014-01-14 16:38:05 495 1
什么是频闪?LED为什么频闪
 
2017-02-28 20:38:46 407 2
水稳层水泥检测频率
水稳层水泥检测频率... 水稳层水泥检测频率 展开
2018-12-02 08:24:28 536 0
激光投线仪可不可以用于打水平?
 
2013-03-27 00:44:15 311 1
优稳DCS 管理员默认密码
 
2018-11-14 04:01:49 344 0
经纬仪气泡稳不住是怎么回事?
 
2013-11-18 19:48:37 746 2
稳瞬态荧光光谱仪品牌哪些好?

稳瞬态荧光光谱仪品牌:提升研究和工业应用的光谱仪选择

在现代科学研究和工业应用中,稳瞬态荧光光谱仪已经成为不可或缺的重要工具。随着技术的不断进步,市场上涌现出许多品牌和型号,使得选择合适的仪器成为一项挑战。本文将围绕稳瞬态荧光光谱仪的品牌选择进行探讨,分析不同品牌的优势,帮助科研人员和工业用户在选购仪器时做出更加明智的决策。

稳瞬态荧光光谱仪的主要功能是分析样品的荧光特性,特别是在短时间尺度内的荧光衰减过程。这类仪器通常用于生物医学研究、材料科学、环境监测等领域,能够提供高精度、高灵敏度的荧光数据。随着市场需求的不断增长,各大品牌在仪器的稳定性、性能、价格和售后服务等方面展开了激烈竞争。选择一款适合的稳瞬态荧光光谱仪,不仅需要考虑品牌的声誉,还要关注其技术特点和应用范围。

稳瞬态荧光光谱仪的核心技术是其时间分辨能力。不同品牌的仪器在时间分辨率上有所差异,这对于需要精细分析短时间内荧光衰减过程的研究至关重要。知名品牌如Horiba Scientific和Edinburgh Instruments,凭借其领先的技术和创新的设计,提供了高时间分辨率的仪器,适合处理复杂的瞬态荧光数据。特别是Horiba的FluoroMax系列和Edinburgh的FLS1000系列,在范围内得到了广泛的应用,用户评价较高。

仪器的稳定性和耐用性也是选择稳瞬态荧光光谱仪时必须考虑的因素。稳瞬态荧光光谱仪在高通量实验和长时间使用的环境中,要求具有极高的稳定性和较长的使用寿命。品牌如Horiba和Edinburgh在稳定性方面具有很强的优势,其产品在高负载工作情况下依然能够保持优良的性能,这对于科研人员和工业应用中的持续研究和生产非常重要。

在价格方面,稳瞬态荧光光谱仪的市场价格差异较大。高端品牌通常价格较高,但其性能和技术支持也更加完善。对于一些预算有限的研究机构或小型企业来说,选择一些性价比高的品牌,如FLS Instruments,可能是一个较为理想的选择。FLS Instruments在保持较高性能的也提供了相对经济的解决方案,尤其适合初创实验室或中小型科研项目。

除了性能和价格,售后服务同样是评估稳瞬态荧光光谱仪品牌时的重要因素。一个强大的售后服务团队能够在设备出现故障时迅速提供技术支持,并及时解决问题。大多数知名品牌,如Horiba和Edinburgh,都提供范围的售后服务网络,能够为用户提供维修、校准以及技术咨询服务,确保仪器能够长期稳定运行。

在选择稳瞬态荧光光谱仪品牌时,用户应根据自身的需求和预算,综合考虑性能、稳定性、价格和售后服务等多个因素。无论是科研还是工业应用,选择一款适合的光谱仪品牌,能够大大提高工作效率,并为相关领域的研究和生产提供有力支持。,稳瞬态荧光光谱仪品牌的选择不仅仅是一个技术决策,更是对未来研究和发展的投资。

在这个竞争激烈的市场中,只有通过细致的市场调研和对比,才能找到合适的品牌和型号。

2025-04-18 17:45:15 107 0
扫频信号原理
扫频信号的产生原理及为什么需要扫频信号源
2007-06-12 12:50:03 281 2
单频DFB激光器、单频半导体激光器哪里有做的?
本产品基于航天器的高精度驱动温控电路,对DFB半导体激光器进行控制,可实现超窄的输出光谱线宽(典型值300kHz),和出色的边模YZ比(SMSR)。 南京聚科光电技术有限公司专业生产—025-68790660
2018-11-18 06:52:30 321 0
激光用于激光光源,测量拉曼光谱有何优点
 
2016-06-28 12:25:02 388 1
用于激光测距仪的激光器
需要光斑直径Z好在0.5mm内的 请推荐几类 型号 厂家什么的
2010-04-08 15:33:57 330 2

1月突出贡献榜

推荐主页

最新话题