全部评论(2条)
-
- 起个名字还限购 2010-06-30 00:00:00
- 模拟少奶奶的
-
赞(17)
回复(0)
-
- fancy丶baby丶 2010-07-05 00:00:00
- 要交了 fuck
-
赞(19)
回复(0)
热门问答
- 宽场荧光显微镜、激光共聚焦荧光显微镜及全类反射荧光显微镜的比较
- 激光扫描共聚焦荧光显微镜的激光扫描共聚焦荧光显微镜的缺点
- 激光扫描共聚焦荧光显微镜的历史
- 激光共聚焦荧光显微镜 活体荧光物质检查
激光共聚焦显微镜,简称CLSM(Confocal Laser Scanning Microscopy),是一种利用激光共振效应进行成像的显微镜。它通过使用激光束扫描样品的不同层面,将所得到的图像合成成一幅清晰的三维图像。与传统显微镜相比,激光共聚焦显微镜具有更高的分辨率和更强的穿透能力,可以观察到更加细微的结构和更深层次的物质。
在活体荧光物质的检查中,激光共聚焦显微镜发挥了重要的作用。通过标记活体细胞或组织的特定结构或分子,激光共聚焦显微镜可以实时观察到这些结构或分子的活动和分布情况。
在生物医学领域,它可以用于观察细胞的生长、分裂和死亡过程,研究细胞信号传导和分子交互作用等。在药物研发中,它可以用于观察药物在活体细胞或组织中的分布情况,评估药物的疗效和毒性。此外,在神经科学领域,激光共聚焦显微镜可以用于观察神经元的活动和连接,揭示大脑的工作机制。
NCF950激光共聚焦显微镜较宽场荧光显微镜的优点:
l 能够通过荧光标本连续生产薄(0.5至1.5微米)的光学切片,厚度范围可达50微米或更大。(主要优点)
l 控制景深的能力。
l能够从样品中分离和收集焦平面,从而消除荧光样品通常看到的焦外“雾霾",非共焦荧光显微镜下无法检测到。(最重要的特点)
l 从厚试样收集连续光学切片的能力。
l 通过三维物体收集一系列图像,用于二维或三维重建。
l收集双重和三重标签,精确的共定位。
l 用于对在不透明的图案化基底上生长的荧光标记细胞之间的相互作用进行成像。
l 有能力补偿自发荧光。
耐可视共聚焦成像效果图 尼康共聚焦成成像效果图
NCF950激光共聚焦显微镜应用,共聚焦显微镜在以下研究领域中应用较为广泛:
1、细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡;
2、生物化学:酶、核酸、FISH、受体分析
3、药理学:药物对细胞的作用及其动力学;
4、生理学:膜受体、离子通道、离子含量、分布、动态;
5、遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断;
6、神经生物学:神经细胞结构、神经递质的成分、运输和传递;
7、微生物学和寄生虫学:细菌、寄生虫形态结构;
8、病理学及病理学临床应用:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断;
9、生物学、免疫学、环境医学和营养学。
NCF950激光共聚焦显微镜配置
NCF950激光共聚焦配置表
激光器
激光405 nm、488 nm、561 nm、640 nm
探测器
波长:400-750nm,探测器:3个独立的荧光检测通道;1个DIC透射光检测通道
扫描头
最大像素大小:4096 x 4096 扫描速度:2 fps(512 x 512像素,双向),18 fps(512 x 32像素,双向),图像旋转: 360°
扫描模式
X-T, Y-T, X-Y, X-Y-Z, X-Y-Z-T
针孔
无级变速六边形电动针孔;调节范围:0-1.5毫米
共焦视场
φ18mm内接正方形
图像位深
12bits
配套显微镜
NIB950全电动倒置显微镜
光学系统
NIS60无限远光学系统(F200)
目镜(视野)
10×(25),EP17.5mm,视度可调-5~+5,接口Φ30
观察镜筒
铰链式三目观察镜筒,45度倾斜,瞳距47-78mm,目镜接口Φ30,固定视度;1)目/摄切换:(100/0,50/50,0/100);2)目视/关闭目视/可调焦勃氏镜
NIS60物镜
10×复消色差物镜,NA=0.45 WD=4.0 盖玻片=0.17
20×复消色差物镜,NA=0.75 WD=1.1 盖玻片=0.17
60×半复消色差物镜,NA=1.40 WD=0.14 盖玻片=0.17 油镜
100×复消色差物镜,NA=1.45 WD=0.13 盖玻片=0.17 油镜
物镜转换器
电动六孔转换器(扩展插槽),M25×0.75
聚光镜
6孔位电动控制:NA0.55,WD26;相衬(10/20,40,60选配)
DIC(10X,20X/40X)选配.空孔
照明系统
透射柯拉照明,10W LED照明;
落射照明:宽场光纤照明
6孔位电动荧光转盘(B,G,U标配);电动荧光光闸;中间倍率切换
手动1X,1.5X、共焦切换
机身端口
分光比:
左侧:目视=100:0;右侧:目视=100:0;
平台
电动控制:行程范围130 mm x100 mm (台面325 mm x 144 mm )最大速度:25mm/s;分辨率:0.1μm - 重复精度:3μm。机械可调样品夹板
调焦系统
同轴粗微动升降机构,行程:焦点上7下2;粗调2mm/圈,微调0.002mm/圈;可手动和电动控制,电动控制时,最小步进0.01um;
DIC插板
10X,20X,40X插板;可放置于转换器插槽;选配
控制
摇杆,控制盒,USB连接线
软件
软件:NOMIS Advanced C
图像显示/图像处理/分析
2D/3D/4D图像分析,经时变化分析,三维图像获得及正交显示,图像拼接,多通道彩色共聚焦图像
- 激光扫描共聚焦荧光显微镜的样品要求
- 共聚焦荧光显微镜 的价格是多少
- 全内反射荧光显微镜的优势
- 哪里有紫外激发的激光共聚焦荧光显微镜
- 激光扫描共聚焦荧光显微镜的共聚焦扫描显微镜的成像原理
- 与普通荧光显微镜相比激光共聚焦优势在哪
- 激光扫描共聚焦荧光显微镜的激光扫描共聚焦显微镜基本结构
- 全内反射荧光显微镜的主要应用
- 全内反射荧光显微镜的光学原理
- 怎样利用共聚焦荧光显微镜进行fret实验
- 共焦荧光显微镜和多光子荧光显微镜光路图的区别
- 荧光显微镜
- 请教一下荧光显微镜的具体使用方法,急!谢谢咯!... 请教一下荧光显微镜的具体使用方法,急!谢谢咯! 展开
- 基于共聚焦显微技术的显微镜和荧光显微镜的区别
荧光显微镜主要应用在生物领域及医学研究中,能得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,是形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。
以共聚焦技术为原理的共聚焦显微镜,是用于对各种精密器件及材料表面进行微纳米级测量的检测仪器。
材料科学的目标是研究材料表面结构对于其表面特性的影响。因此,高分辨率分析表面形貌对确定表面粗糙度、反光特性、摩擦学性能及表面质量等相关参数具有重要意义。共焦技术能够测量各种表面反射特性的材料并获得有效的测量数据。
VT6000共聚焦显微镜基于共聚焦显微技术,结合精密Z向扫描模块、3D 建模算法等,可以对器件表面进行非接触式扫描并建立表面3D图像,实现器件表面形貌3D测量。在材料生产检测领域中能对各种产品、部件和材料表面的面形轮廓、表面缺陷、磨损情况、腐蚀情况、平面度、粗糙度、波纹度、孔隙间隙、台阶高度、弯曲变形情况、加工情况等表面形貌特征进行测量和分析。
应用
1.MEMS
微米和亚微米级部件的尺寸测量,各种工艺(显影,刻蚀,金属化,CVD, PVD,CMP等)后表面形貌观察,缺陷分析。
2.精密机械部件,电子器件
微米和亚微米级部件的尺寸测量,各种表面处理工艺,焊接工艺后的表面形 貌观察,缺陷分析,颗粒分析。
3.半导体/ LCD
各种工艺(显影,刻蚀,金属化,CVD,PVD,CMP等)后表面形貌观察, 缺陷分析 非接触型的线宽,台阶深度等测量。
4.摩擦学,腐蚀等表面工程
磨痕的体积测量,粗糙度测量,表面形貌,腐蚀以及亚微米表面工程后的表面形貌。
- 荧光显微镜的5倍物镜怎么不能聚焦
- 正置荧光显微镜与倒置荧光显微镜
正置荧光显微镜与倒置荧光显微镜:选择与应用分析
在生物学研究和医学检测领域,荧光显微镜已成为一种不可或缺的工具。随着荧光显微镜技术的发展,市场上涌现出了不同类型的荧光显微镜,其中正置荧光显微镜和倒置荧光显微镜是两种常见且用途各异的设备。本文将对这两种显微镜的特点、应用场景及选择依据进行详细分析,帮助科研人员和实验室工作人员做出合理的设备选择,以满足不同的研究需求。
正置荧光显微镜的特点与应用
正置荧光显微镜(upright fluorescence microscope)以其独特的设计,广泛应用于细胞学、分子生物学及病理学等领域。其结构通常将光学元件布置在显微镜顶部,观察时样品位于镜头下方。这种设计可以更方便地进行细胞切片或活体样品的观察。其优点之一是可以通过简单的操作轻松获取高分辨率的荧光图像,同时对于样品的处理及拍摄角度也有一定的灵活性。
正置显微镜特别适用于薄切片样品的观察,因为样品通常被放置在载玻片上,能够在较短的距离内对其进行有效观察。由于光源和检测设备位于显微镜的上方,可以有效减少样品的热损伤和其他不必要的干扰。由于这种设备能够提供更为直观的荧光图像,常被用于细胞计数、标记分子定位及疾病标志物的研究等任务。
倒置荧光显微镜的特点与应用
与正置显微镜不同,倒置荧光显微镜(inverted fluorescence microscope)的光学系统设计是将镜头置于样品的上方,光源和反射镜位于样品下方。这一结构使得倒置显微镜在观察培养在培养皿中的细胞、活体组织和更大体积样品时具有明显的优势。倒置显微镜可以方便地从样品的底部进行观察,从而避免了细胞培养过程中需要过多的操作及扰动。
倒置荧光显微镜在细胞培养和组织学研究中得到了广泛的应用,特别是在活细胞成像及动态观察中,具有得天独厚的优势。其大的特点是可以直接在细胞培养皿中观察细胞的生长、分化、迁移等生物学现象,对于长期动态观察以及细胞互动研究具有不可替代的作用。由于倒置显微镜在设计上较为紧凑,样品放置便捷,适合用于高通量筛选等实验操作。
选择正置或倒置荧光显微镜的考虑因素
选择适合的显微镜需要综合考虑实验的具体需求及研究目标。若实验需要对细胞切片或薄片样品进行高分辨率的观察,正置显微镜可能更为适合。而如果实验对象是培养在培养皿中的活细胞或大尺寸的样品,倒置显微镜则更为高效。在实际应用中,科研人员应根据样品的性质、观察目标以及实验操作的便捷性,做出合理的选择。
专业总结
正置与倒置荧光显微镜各有特点,选择时需要充分考虑实验的实际需求。正置显微镜擅长处理薄切片及提供高分辨率图像,而倒置显微镜则在细胞培养和动态观察中具有明显优势。根据实验的需求及操作环境,选择合适的显微镜设备,是确保实验成功与数据精确性的关键。
12月突出贡献榜
推荐主页
最新话题
-
- #八一建军节——科技铸盾,仪器护航#
- 如何选择到合适的磷青铜绞线?磷青铜绞线的质量...如何选择到合适的磷青铜绞线?磷青铜绞线的质量解析和如何选择到合适的绞线?磷青铜绞线是一种特殊的铜合金导线,由铜、锡和磷等元素组成,具有很好的机械性能、电气性能和耐腐蚀性。磷青铜绞线基本定义与特性:磷青铜是铜与锡、磷的合金,质地坚硬,可制弹簧。典型成分为铜(90%)、锡(6-9%)及磷(0.03-0.6%)锡元素提升合金的强度和耐腐蚀性,磷则细化晶粒、增强耐磨性铸造性能。耐磨性:表面氧化层使其在特殊环境下耐腐蚀,使用寿命长导电性:保持铜很好导电性能的同时有化电子传输路径非铁磁性:不含铁元素,避免在强磁场环境中产生额外能量损耗弹性:受到外力作用时能迅速恢复原状
- 八一建军节 铁血铸军魂













参与评论
登录后参与评论