仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

红外显微ATR成像技术原位测试微塑料的方案

珀金埃尔默 2019-06-10 13:42:52 706  浏览



参与评论

全部评论(0条)

热门问答

红外显微ATR成像技术原位测试微塑料的方案




2019-06-10 13:42:52 706 0
使用显微红外分析微塑料的操作流程

介绍

      微塑料正成为一个重大的环境问题。定期、有新闻价值的重大研究揭示,塑料和微塑料存在于偏远的地理位置,或作为污染物存在于不同消费品(特别是食品和饮料)中以及海洋生物消化系统内。微塑料的来源可能是初生微塑料,即专门设计或制造成小尺寸的材料,或者从较大材料开始但在环境中分解成较小碎片的次生微塑料。Z初,微塑料经定义为尺寸小于5 mm的塑料材料,但是,尽管尚未有公认的定义,但该定义现在经更普遍地表述为尺寸处于1 mm且小至微米水平范围内的塑料颗粒。

      环境中大量的塑料污染是一个看得见的重大问题,亟待解决。小尺寸的微塑料人眼并不能看到,但它对水生和海洋物种的健康有着重要影响,并且Z终可能会进入人类食物链。

      分析含有微塑料的环境样品对确定其普遍性及其影响至关重要。一系列的分析技术已应用于微塑料的分析。在所采用的技术中,红外(IR)光谱分析,更具体而言是红外显微镜,是检测和鉴别微塑料的主要分析技术。

红外显微镜的微塑料分析操作流程

从原始样品到Z终结果有几个步骤,包括采集样品到数据分析。所涉及的步骤可能会有所不同,这取决于样品类型和红外(IR)分析制备样品所需的样品净化量。工作流程如表1

所示。

表1.微塑料分析操作流程所涉及的步骤。

      不同来源的样品和不同类型的样品都需要对其微塑料的含量进行分析。不同的样品在采集和净化方面均有其自身的复杂性。例如,瓶装水中微塑料的分析无需对样品净化,而只需进行简单的过滤即可分析。而污水或动物摄入的微塑料则需花费几天时间去净化样品,消解其他有机材料,从而对微塑料进行“洁净”分析。

样品采集

以下对不同来源的样品所采取的采样策略做简要概述。

水采样

      小溪、河流到湖泊、远海等多种不同水环境含有微塑料。此外,据悉来自水处理厂的水也含有微塑料。采样要求之间存在相似之处,因为要采集所需粒径范围内的所有微塑料,并且了解水样的体积也非常重要。采用一致的采样策略,可确定微塑料的数量和/或质量随着时间的推移呈增加还是减少趋势。

      样品采集对海水和淡水具有不同的要求,这主要是因为水密度不同。大多数合成高分子材料的密度低于海水,这意味着微塑料一般漂浮在水面上,但是许多高分子类型材料都会沉没在淡水系统中。用于采集海水表面样品的典型设备是一个拖于船后的已知网目尺寸的曼塔拖网。对于水层面下的样品,则采用合适的浮游生物采集网。这种方法也适用于湖泊和水湾。网目尺寸是一个重要的参数,因为太小的网目会导致网在样品采集过程中受到相当快的阻塞。样品采集的体积和面积可通过使用流量计以及根据网的入口尺寸和采集过程中移动的距离得以确定。为测试河流水,通常将网悬挂于河流中的一个固定点,并且网的位置可得到设置或调整,以便在水面上或水面下的固定深度进行采集。

沉积物采样

      在许多情况下,可在沉积物样品(例如在海滩或河岸上)的表面上观察到(微)塑料。在这种情况下,在分析前可易于对样品进行提取和清理。但是,微塑料存在于沉积物的更深层处,因此需要采用一种采样策略。通常采集已知质量或体积的沉积物,并确定每单位体积颗粒的质量或数量。沉积物样品可采集自海床、湖泊或河床,或者在潮汐或河流水位降低时采集自海滩或河岸。沉积物样品需要进一步的样品净化以便提取微塑料用于分析,下文将对该过程做介绍。

动物摄入的塑料采样

      据悉,塑料和微塑料存在于多种海鸟和海洋生物的胃中,且通常会导致死亡。1较大的塑料材料可从生物的解剖胃中物理提取而得,其在分析前需进行清理。为确定包括微塑料在内的塑料总量,有必要在分析前通过消解完全去除生物材料。下文将对消解的各种方法作讨论。消解过程会留下塑料材料并且有望去除所有其他材料。

家用品和日用消费品采样

     在家庭中有几种微塑料被释放到排水系统中。众所周知,洗衣机在清洗的过程中会产生成千上万的纤维。2此外,尽管根据不同国家和地区的立法,塑料微珠的使用正在逐步淘汰,但是许多日用消费品和化妆品(例如牙膏和沐浴露)均含有塑料微珠成分。来自家用品的微塑料的采样可通过在洗衣机的出水口或排水系统的出水口上安装具有合适网目尺寸的筛网得以完成。就去角质剂和身体磨砂膏而言,其大多数成分具有水溶性,因此在过滤前,将样品与开水混合通常能去除微塑料之外的所有物质。3

样品净化

      为从红外显微镜分析中获得Z佳结果,必须确保样品洁净且无任何干扰物质(例如生物基质)。以下是红外分析前用于样品净化所采用的不同方法的简要概述。

密度分离法(漂浮)

      塑料具有多种密度范围,因此一些塑料会漂浮在淡水或海水中,而另一些则会沉没。这种漂浮原理可用于将塑料材料与密度通常较高的其他物质(例如沉积物)分离。通过将样品与(密度较高的)饱和盐溶液混合,可扩大漂浮的塑料材料的范围,并且可从液体的上层部分去除塑料。

      塑料的密度范围大约从0.9g/cm3(聚丙烯(PP)和低密度聚乙烯(LDPE))至1.4g/ cm3(聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC))不等。4

      因此对于典型密度为1-1.05g/cm3的淡水或海水样品,PP和LDPE将通过漂浮从密度显著较高的沙子或沉积物中分离出来。

      已采用一系列将溶液密度Z大化的饱和盐溶液,以便使更多种范围的塑料材料得以漂浮。5,6,7采用了密度为1.2-1.8g/cm3的氯化钠、溴化物和碘化物以及密度为1.7g/cm3的氯化锌。分离过程包括搅拌样品,通常是沉淀物样品,并使溶液沉降。然后取溶液的上清液过滤后分析。

样品消解

      样品消解的目的是去除会干扰微塑料分析但不会影响微塑料本身的生物、无机或有机材料。根据样品基质,可采用一系列不同的样品消解技术。用于消解的材料可具有酸性、碱性、氧化性或酶促性。8,9,10对于酸性消解,采用的是热硝酸,但是这将导致一些高分子类型材料降解。10%的氢氧化钾溶液已作为基底物。经证明,处于30-40%范围内的过氧化氢溶液具有有效性。但是,消解可能较缓慢,其需要耗费几天时间才可完成。采用蛋白酶K作为酶消解具有有效性。这种处理速度显著加快,并且在50℃下两小时的消解可从样品中去除大量生物材料并且不会降解塑料本身。

过滤

      在一些样品类型中,过滤是指从样品基质中分离出所需的微塑料(例如瓶装水中微塑料的采集和测量)。在许多情况下,过滤是样品净化过程后的附加步骤。过滤过程需要符合分析的要求,并且可用作样品净化步骤。使用不同网目尺寸的筛网可以将塑料收集调整到分析技术所需的样品尺寸大小。例如,Z初采用大的网目尺寸可过滤掉存在的较大塑料或者可去除其他较大的碎片,以便防止过滤器堵塞。微塑料可受到较小网目尺寸的筛网或滤膜的截留。采用标准红外光谱仪易于分析较大的塑料。但是,红外显微镜更常用于微塑料的分析。在某些情况下,对筛网上采集的微塑料所作的红外显微镜分析可直接在筛网上进行。3过滤过程的优化将在后面进行描述。

用于红外分析的样品制备

      红外光谱分析是识别和鉴定高分子材料的主要分析技术。材料的红外光谱为该材料提供唯yi的“指纹”,并且可与大量的光谱库作比较以进行正确识别。采用标准的红外光谱仪器和衰减全反射(ATR)采样技术易于测量尺寸不小于100微米左右的微塑料纤维和颗粒。小型便携式红外光谱仪器(图1)可携带至船上,以便立即识别采集的样品。11

      对于利用ATR进行测量的较大样品,通常无需样品制备。将样品直接置于ATR附件上,采用压力臂施加压力并扫描样品。但是,应注意的是,在环境中存在了相当长时间的塑料已风化,并且其表面可能覆有生物膜。ATR是一种表面技术。因此,在这种情况下,建议将塑料样品切片并测量样品的内部体积而非受损/受包覆表面。

       红外显微镜或红外成像系统可用于测量更小的颗粒。为从此类技术中获得Z佳结果,必须将微塑料从样品基质中分离出来。上述样品采集和样品净化的介绍中已对该方法作出讨论。但是,具体操作步骤可针对红外显微镜进行优化。

图1.具有ATR采样模块的Spectrum Two红外光谱仪。


优化红外显微镜分析的过滤过程

      样品过滤会将微塑料分离至合适的基底上用于分析。滤膜具有多种尺寸、过滤材质和孔径尺寸,以便优化过滤过程。某些过滤材料在光谱的红外线区域内具有显著的吸附作用,并且这些材料将掩盖因感兴趣的颗粒引起的吸附。因此,采用Z合适的过滤材料极其重要。一系列不同的滤膜类型和尺寸已得以评价,以便为红外显微镜的微塑料分析确定Z佳滤膜类型(表2)。

表2.评估一系列不同的滤膜与显微红外测试的适用性

      滤膜直径将影响样品容量和过滤能力并且应保持具有合理的尺寸,以便减少红外成像所需的时间。孔径将决定待截留的Z小粒径,但该尺寸不能易受某些样品基质堵塞。对于与红外分析之间的兼容性,(归因于红外分析的近似衍射极限)颗粒需大于1.5微米,并且滤膜的可用光谱范围极其重要。每个滤膜的相对成本可能非常重要,但是对于样品净化可能耗费几小时或几天时间的样品,滤膜的成本就并非十分重要。对于样品处理量较高的实验室,这应该是一个重要的考虑因素。

      下文将对红外显微镜的采样模式作更详细的讨论,但是对于滤膜上的颗粒分析,其选择通常受限于透射或反射。在进行多种颗粒的自动测量时可使用ATR,但是样品容易受到交叉污染。滤膜类型需要在透射或反射模式下对红外光不出现任何显著的吸收。表1所示是记录了滤膜的红外透射和反射光谱,并确定每种类型的可用范围。图2a所示为透射模式总结,而图2b所示为反射模式总结。

      镀金聚碳酸酯滤膜具有极好的反射能量,但无透射能量,而PVDF滤膜在透射和反射模式下均显示出显著的吸收带,因此不合适。

      建议使用硅滤膜进行透射分析,并使用硅、银膜或镀金聚碳酸酯进行反射分析。

      硅的唯yi缺点是相对成本较高以及不是标准过滤系统所直接兼容的尺寸,属于“非标准”尺寸(矩形尺寸)。

图2a和2b。不同滤膜类型的透射和反射范围。

两种不同滤膜类型的示例光谱如图3所示。

图3.不同类型滤膜的透射和反射范围。

显微红外分析

图4.PerkinElmer Spotlight 400红外成像系统


采样模式

      采用红外测量常规样品的原则,使用显微红外对微塑料样品进行测量。采样模式是透射、反射或ATR。相同的优势和不足之处同样适用于显微红外。

1.透射

      为在透射模式下测量样品,样品应置于合适的红外透射基底上。样品厚度通常应小于50微米,以免达到吸收饱和。如果分析包含少量颗粒,且可能“挑选”颗粒,则Z好的方法是将颗粒定位于显微镜样品载物架的13mm KBr窗片上。如此可确保分离颗粒,并将采集到颗粒的纯光谱。如果颗粒厚度大于50微米,则可将样品置于微型金刚石压池中,压至更薄的尺寸,可以在显微镜台上进行透射测量。但是,在大多数情况下,即使使用显微镜工具,样品也显得太厚或不容易分离。如前所述,可使用合适的红外透射模式的滤膜,而无需制备样品或将颗粒移除至其他基底上。另外,在大多数情况下,某些颗粒的尺寸小于50微米,而另一些则更大。去除大量颗粒的过程耗时长且困难。

2.反射

      当分析目的是定性样品时,通常不在本体聚合物上进行反射测量(直接镜面反射法)。所获得的光谱将包含混合的光谱成分,即表面反射和透射/反射成分。此类成分会导致光谱失真,特别是光谱的较强波段,并会干扰光谱库的搜索过程。但是,透射/反射成分通常可能是主要的光谱贡献,并产生可识别的光谱。当红外光束照射到样品时,一些光束将直接反射离开样品表面,其余光束将进入(透射)或穿过样品。如果将样品置于高反射基底上,如金反射镜或反射滤膜,则光束将反射离开该基底并回穿样品,从而有效地提供双重透射。因此,从反射测量中可获得优质的光谱,但是,Z强波段可能非常强。对于有一定厚度的样品,反射比透射效果好。

3. ATR

      ATR已成为在FT-IR仪器上简单测量和识别样品的标准技术。该技术无需制备样品,并且可作用于一系列不同的样品尺寸,包括在透射或反射方面不起作用的厚度过大的样品。这是一种表面测试技术,因此,所获得的光谱是材料表面的光谱,而非体积光谱。此外,所测量的有效样品厚度处于1或2微米的范围内,这导致红外光谱较弱。但是,所获得的光谱强度足以识别材料或材料的主要成分。显微红外可配备微型ATR晶体,以对微粒进行自动ATR测量。如果样品位于坚硬的固体基底上,如金反射镜、窗口材料或显微镜载玻片,并且含有非常少量的颗粒,则在每次测量/颗粒之后,只要清洁ATR晶体,ATR即可成为一种可使用的技术。ATR的测试原则是基底与ATR晶体之间的对样品的压缩。在测量之后即释放压力时,样品经常留在ATR晶体上,而并非回到基底上。因此,如果在不清洁晶体的情况下测量多个颗粒,交叉污染将是一个主要问题。因此,通常不采用显微ATR采样模式。

      在ATR成像中,表面明显较大的ATR晶体与样品接触,并在整个晶体表面上进行ATR测量。

显微红外的测量模式

      红外显微镜能够测量单个微观粒子,但其还有一个额外的优点,即能够以全自动模式运行来测量样品中的多个颗粒,也能够对整个样品(如完整的滤膜)进行绘图(map)或成像(image)。自动化应用于每种前述的不同的采样模式。显微镜还配有可视摄像机,以允许操作员查看其正在使用的样品,并设置位置进行分析。

点模式

      在点模式下,软件允许用户选择一个或多个对应于颗粒的测量位置。然后,红外显微镜将驱动载物台至测量位置,以进行扫描,然后移动至下一个样品位置。如果样品含有少量颗粒,则上述方法可能是一种非常快的光谱收集方法。对于每个位置,软件控制的光阑大小应可视地包围颗粒,以避免杂散光。与标准红外光谱测量一样,需采用合适的背景扫描,并且应使用与样品扫描相同的孔径尺寸在红外显微镜上来执行。对于透射,应在无样品的空白区中测量背景。对于反射,应在反射基底的空白区中记录背景。对于ATR,应使用干净的晶体来测量背景。

      软件内的颗粒检测算法能够分析可见图像来发现样品内颗粒的存在。然后,软件将自动扫描所有颗粒和适当背景的光谱。相对于手动选择分析位置,该方法具有显著的速度优势,或者,如果对整个样品进行绘图或成像,则可节省大量时间。图5所示为颗粒识别工具。

图5.分析图像发现存在的颗粒。


绘图(Mapping)

     Mapping实验涉及定义待测量的样品面积(这可能是几毫米),以及定义整个样品上测量的X、Y间距。例如,如果样品为0.7 mm×1 mm,并且应每100微米进行一次测量,则Mapping实验将进行70次测量(7×10)。在每个点上收集红外光谱,并在整个面积上生成样品的红外图。

      Mapping实验利用红外显微镜中存在的单点检测器(通常是MCT检测器),并将测量单个光谱、移动载物台、测量光谱,移动载物台。对于小样本区域或大XY间距,这已足够。但是,对于大样本区域(如滤膜),或测量小XY间距的非常小的颗粒,Mapping实验可能非常慢,并且需要很长时间。


成像(Imaging)

      成像Imaging实验类似于绘图Mapping实验,不同之处在于成像实验使用具有元件阵列的检测器同时测量多个点,而非单个检测器元件,导致整体测量速度显著加快。阵列检测器可能是线性阵列或焦平面阵列。线性阵列具有几何形状n×1,其中n通常为16或32,而焦平面阵列具有几何形状n×n,其中n通常为16、64或128。焦平面阵列检测器的价格较高,并且其光谱截止值约为s/b 950 cm -1,以致于忽略某些重要的光谱信息,而线性阵列检测器具有低至s/b 600 cm -1的完整MCT光谱范围。

图6. Mapping实验收集一行数据点,然后移动至下一行,直至完成为止。


图7a和7b.(a)线性阵列检测器收集一“列”数据点,然后移动至下一“列”。(b)焦平面阵列检测器在一次测量中收集数列和数行数据点。

红外成像的一个示例如图8所示。

图8.从化妆品配方中过滤的微塑料颗粒的总红外吸光度图像

      在红外图像中的每个像素均有与之相关的完整的红外光谱。在点模式下工作时,系统将每个颗粒生成一个光谱。在图像模式下工作时,系统将每像素生成1个光谱,从而导致每次实验产生大量数据。例如,以6.25μm像素大小测量的10 mm×10 mm图像将包含超过250万个光谱。软件的各种处理工具均考虑到简化数据解析步骤,Z强大的是主成分分析(PCA)。在PerkinElmer光谱图像软件中,该分析法通过选Show Structure功能得以引用。该功能将使用PCA在样品内寻找不同的化学组分。不同的PCA组分将表示存在的不同材料,并针对不同组分生成图像,以指示样品内不同材料的分布位置。图9a-d所示为一个示例



图9a-d.(a)总吸光度红外图像。(b)显示混合组分的PCA分析。不同的组分采用不同的颜色,以区分不同的化学成分类型。(c)2组分图像。(d)4组分图像。

图10.观察到的颗粒光谱;组分4的图像即聚乙烯(顶部),以及组分2的图像即聚丙烯(底部)。



参考文献

1.J van Franeker et al,Environmental Pollution 159(2011)2609-2615.

2.Browne A.,2011,Accumulations of microplastic onshorelines worldwide:sources and sinks Environmental,Science and Technology.

3.Robertson I.,PerkinElmer Application Note 012079_01,“Detection and Identification of Microplastic Particles in Cosmetic Formulations Using IR Microscopy”.

4.https://www.stelray.com/reference-tables/,  accessed 3rd August 2018.

5.Labo magazine–Oktober 2010,“Wasserverschmutzungdurch Mikroplastikpartikel”,www.labo.de.

6.Imhof,H.K.,et al,Limnology and Oceanography-Methods,10,524–537.

7.Liebezeit,G.,and Dubaish,F.(2012).Bulletin of Environmental Contamination and Toxicology,89(1),213–217.

8.Thompson,R.C.,et al,Science,304(5672),838.

9.Liebezeit,G.,and Dubaish,F.(2012).Bulletin of Environmental Contamination and Toxicology,89(1),213–217.

10.Claessens,M.,etal,Marine Pollution Bulletin,70(1–2),227–233.

11.Cole,M.,et al,Scientific Reports,4,4528.


2019-06-26 17:22:53 1340 0
多层材料的ATR红外光谱成像分析

引言

高分子多层材料在很多领域都有着广泛的应用,而这些材料的结构和成分也是多种多样。高分子多层材料中每一层的厚度变化范围很应用文章大,可以从不足4微米到几十微米甚至更厚。作为研究这类材料的方法,显微红外光谱以及显微拉曼光谱等方法得到了较多的应用1


相比于其他显微傅里叶变换红外光谱分析方法,ATR光谱成像是一种具有更多优势的比较新颖的技术,在多层材料研究中将会非常有意义。以前为了成功实现透射显微红外光谱测量,需要将样品切成薄片(厚度在10微米左右)以避免产生过强的红外吸收。从实际操作的角度上看,这种样品处理方法的难度较大,也很难保持样品的完整性。另外,不管使用哪种显微镜,在高度聚焦的红外光束中放入有限厚度的样品,都可能会影响实际所能达到的空间分辨率2


ATR光谱成像技术可以克服上面所述的一些限制,获得使用常规红外显微镜无法或者很难观察到的详细信息。 首先,作为一种反射光谱技术,ATR光谱成像所测量的样 品不需要切成很薄的样品片,因此更容易保持样品的完 整性。通常情况下,样品被包埋在树脂中或者夹在模块之间,样品表面被打磨平整。其次,使用ATR光谱成像测量时红外光束所穿透的样品厚度较低,使用锗晶体时一般只测量1~2微米深度的样品部分。由于不存在像空气中样品透射测量那样的光束发散问题,所得到的光谱图像更 加清晰,光谱中的干扰成分更少2。样品制成薄膜进行透射测试时还可能存在另一个问题。样品内部的多重反射会产生干涉条纹信号,叠加在实际测量光谱上。这一问题在ATR光谱成像测量中并不明显。另外,能够提供高于透射光谱成像的空间分辨率,是ATR光谱成像的另一个主要优势3。关于该方法的空间分辨率的分析和测试可以在另一篇技术报告中看到4。ATR光谱成像的空间分辨率可以优于1.56微米,而物理衍射限制使得中红外区的透射光谱成 像的空间分辨率是这一数值的3~4倍——而且是在假设前面提到的各种样品问题都被克服的理想情况下。


图1. 多层材料样品的固定和包埋。

图2. 薄层边界处的红外光谱。

专为PerkinElmer® Spotlight傅里叶变换红外光谱成像系统设计的ATR光谱成像附件即可提供上述各种优势应用3。该附件使用锥形锗晶体,可以直接压在多层材料样品的横截面上。该附件的另一个显著特点是其相对较大的晶体面积。标准晶体的采样区域直径约为500微米,这意味着晶体与样品的单次接触即可扫描大部分样品的完整多层结构。此外,还可以选配直径约为1200微米的大面积晶体。如果使用其他一些有效采样面积很小的装置,对多层材料样品横截面进行完整测量需要让晶体与样品反复多次接触。 


本报告叙述了高分子多层材料的ATR光谱成像测量方法, 为多层材料样品的实际测量提供了一些操作建议。


实验

样品处理:为了获得优质的ATR光谱图像,测量区域内的 样品需要与ATR晶体紧密、均匀接触。对于波长较短的红外光波段(例如3微米左右的C-H伸缩振动基频区域),这 种要求就更加重要——因为晶体与样品界面的渐逝波强度在高频区域的衰减速度更快3。为了实现与ATR晶体的紧密接触,测量区域内的多层材料样品的表面必需平整,还需要采取适当的支撑方法以免被晶体挤压时样品发生变形。 


有许多样品处理技术可以使用,其中两种方法Z为常见:一种方法是将待测样品包埋在树脂中然后对表面进行抛光,另一种方法是将待测样品直接夹持固定然后对表面进行抛光.我们发现大多数情况下包埋法获得的样品一致性更好,而且实际操作也更加容易。用弹簧夹将样品垂直夹住(如图1A所示),放入模具中(如图1B所示),注入环氧树脂或者其他树脂,使树脂深度高于弹簧夹1~2毫米但是低于样品顶端边缘。树脂固化之后,对样品顶端进行切割并抛光成平面。抛光过程一般需要使用砂纸和蒸馏水,砂纸粒度从大约30微米到大约1微米,以获得光滑、 高度抛光的表面(如图1C所示)。抛光后的样品块厚度约 为5~8毫米,直接置于ATR光谱成像附件的砧板上,然后升高砧板使样品与晶体紧密接触。包埋处理方法可能会 在样品光谱图像中引入包埋树脂的光谱干扰,但实际上这不会对后续的数据分析造成影响(包埋树脂与样品的 化学成分不同)。多层材料样品一般都具有非常清晰的边界,数据分析软件Hyperview可以将包埋材料对应的光谱信息从样品光谱图像中屏蔽。


使用Spotlight系统测量多层材料样品时,一般每个像素点累加扫描1~16次,光谱分辨率4~16 cm-1。由于使用了阵列检测器,数据采集软件可以定义任意长宽比的矩形光谱成像区域。对于多层材料来说,长而窄的光谱成像区域对于测量所有薄层来说是更加GX的。光谱图像采集时间从几分钟到几十分钟不等,与测量参数有关。


结果

实例1:较高的图像对比度 

通过查看跨越多层材料样品两个薄层之间狭窄边界的光谱中不同成分的光谱特征混合情况,可以初步了解ATR光谱成像所能达到的对比度。在Spotlight仪器的出厂检验中,对于空间分辨率的检测通常使用一块横截面具有屋顶 式结构的特殊高分子材料。跨越边界时红外光谱信号变化的陡峭程度可以被用来估计仪器的空间分辨率4。多层材料样品的不同成分之间一般都会具有非常窄的边界。图 2显示了这种边界上一个聚酰胺层的光谱,光谱成像像素尺寸为1.56微米。可以明显看到,在3.12微米的距离上,聚酰胺层与相邻薄层的光谱混合程度已经很低,足以清晰区分不同成分构成的薄层。如果不同成分之间的光谱差异比较明显,在红外光谱指纹区域可以清晰区分距离约3微米的不同成分。


实例2:包装材料样品 

图3A显示了用环氧树脂包埋的一个包装材料样品横截面的可见图像。在这一实例中,从图像中样品表面的划痕可以看出该样品的抛光处理效果较差。尽管如此,仍然可以获得质量较好的ATR光谱图像。这是因为样品柔韧性比较好,可以使ATR晶体紧紧压住其表面,而且采用的数据分析 软件可以降低成像区域内样品与晶体接触程度变化的影响。图3B显示了该样品的红外光谱重建图像,基本不会看到划痕的影响。 


为了在没有任何关于样品成分信息的情况下获得红外光谱重建图像,本研究对成像光谱进行求导和基线校正,然后 进行主成分分析(PCA)。该方法可以有效地将成像光谱分为独立的子光谱(“主成分”,或者称为“因子”)的集合,从而对成像光谱进行重构。理想情况下,假设一个包含1000 张光谱的成像区域中存在5层结构,那么只需要5种子光谱就可以描述所有1000张成像光谱。在实际应用中,杂质的 存在或者基线变动、空气吸收等对于光谱的影响使得通常需要5种以上的子光谱。由于图像中包含大量的像素光谱,主成分分析可以非常有效地消除光谱中的大部分随机噪声,而且不会导致光谱特征峰的增宽。因此,需要在Z短的时间内获得样品的概览光谱图像时,主成分分析是一种非常有用的探查研究工具。该方法会计算每个像素的原始图像光谱中主成分的贡献(或者称为“得分”),而Z后生成的得分图像对于提高红外光谱图像的对比度非常有用。图 4显示了本研究所用样品的前7个主成分的得分图像。主成分分析结果显示了该样品所有的主要层级结构,还提供了一些微小的细节信息。diyi主成分的得分图像对应于包埋介质。



3. 包埋多层材料的可见图像和红外光谱重建图像。


4. 主成分得分图像。


       如图5所示,第二和第三主成分的得分图像显示了该多层材 料样品的主要分层,即聚乙烯层和聚酰胺层。第四主成分的得分图像表明在聚乙烯层和聚酰胺层之间存在厚度约为6微米的过渡层。通过分析不同类型像素的原始成像光谱,可以比较容易地识别各个分层的成分。另外,图6和图7所示的第五和第六主成分的得分图像显示了一些微小的光谱差异。第五主成分的得分图像表明靠近样品外表面处存在一个3~4微米厚的薄层。使用Spotlight的图层管理功能,可以 查看对应的像素光谱,以1.56微米的步距跟踪光谱的变化。 该薄层的像素光谱中存在独特的羰基特征峰,而其两侧的像素光谱中都没有该特征峰,说明该薄层的化学成分与其 他薄层明显不同。相比之下,图7显示了另外一种情况。第六主成分的得分图像也表明存在一个“薄层”,但是对应的像素光谱没有独特的化学成分特征,仅仅表现为两种材料的过渡导致的光谱强度逐渐变化。这种干扰的出现是由于样品中存在脊线等物理边界,而不是因为化学成分的差异。



图5. 第二、第三和第四主成分的得分图像。



图6. 第五主成分的得分图像。



7. 第六主成分的得分图像。


实例3:显示精细的结构 

本实例所用的多层膜样品由常见材料构成,但是具有厚度不到5微米的过渡层。与上一个样品的处理方法一样,该样品也用树脂包埋并进行抛光。ATR光谱成像的测试面积为 150微米x150微米,光谱分辨率为8 cm-1。图8显示了该样 品的可见图像,其中红色边界内为ATR光谱成像区域。使用 Spotlight中的Show Structure功能和相对峰高度方法对成像光谱进行解析。叠加的主成分得分图像(如图9所示)清楚显示了包埋材料与样品膜的不同,后者的主要薄层(聚乙烯)以绿色显示。本样品中引人注意的是较厚的聚乙烯层下面的薄层结构。主成分得分图像显示该样品中存在超3种化学成分。如果成分种类不超过3种,使用简单的红绿蓝(RGB)图像就可以获得易于观察的组合结果。但是,以这种方式显示3种以上成分或者颜色可能会遇到一些问题,特别是不同成分间存在重叠时。含有多种成分的重叠像素可以表示为多种颜色的叠加:白色,黑色,或者其他颜色。这必然给图像解析增加了难度。Spotlight的图层管理功能可以改变重叠像素的显示规则,例如,只显示强度Z高的颜色以改变光谱图像的对比度。与原始像素光谱分析相结合,这一功能可以有效增强光谱图像的对比度。图 10显示了该样品的复合得分图像,首先以平均颜色显示叠 加像素,然后以Z强成分颜色显示叠加像素。后者对于光 谱图像质量的改善是非常显著的,而对应的原始像素光谱 (如图11所示)证明不同颜色区域确实存在不同的化学成分。在所有薄层都得到满意地表征之后,可以调整单个得分图像的亮度和对比度,然后对多个得分图像进行叠加,以获得Z佳的显示结果。图12显示了将各个主成分的得分图像导入ImageJ软件5处理后得到的复合图像。



图10. 使用色彩叠加功能增强细节信息。



图11. 各个薄层对应的红外光谱。



讨论

上述实例表明了ATR光谱成像附件对高分子多层材料的测试和表征能力。通过这些实例可以看出,样品包埋处理方法非常有效,不会或者极少导致样品发生降解。在不知道样品的化学成分信息时,主成分分析是一种非常有效的方法(相比于相对峰高度法),可以提供样品的概览光谱图像,还能够揭示精细结构的存在。然而,对主成分分析所产生的得分图像与原始光谱进行对比观察,以确认得分图像的化学成分还是非常必要的。因为主成分分析也会显示样品的物理和形貌结构,可能会与化学成分差异相混淆。为了更好地显示计算出的光谱图像,用不同方式显示重叠像素是值得考虑的,但是所得结果仍然要通过原始像素光谱进行确认。Spotlight系统所获得的数据质量一般足以直接用于在商业数据库中进行搜索,为谱图解析提供帮助。很多样品的测试结果都说明了这种做法的可行性,具体数据没有在本报告中显示。使用的数据库中包含透射方法获得的光谱时,在进行搜索之前对样品光谱进行ATR校正以减少与波长相关的吸光度变化,有可能提高搜索结果的质量。


结论

在高分子多层材料样品的分析中,使用Spotlight傅里叶变换红外光谱成像系统,ATR光谱成像技术的很多优势超越 了已经过验证的透射红外光谱成像技术。除了在一定程度上简化样品处理方法、降低干涉条纹等光谱干扰的风险以外,ATR光谱成像技术可以提供更高的空间分辨率。厚度为 4微米或者更薄的薄层都可以得到有效识别。多层材料中含有粘结剂或者其他成分构成厚度低于5微米的薄层时, 这种空间分辨能力尤为重要。因此,ATR光谱成像技术在高分子多层材料分析中的应用必定会在未来几年内会迅速增长。


参考文献

1. See, for example, ‘Raman Microscopy,’ P. Dhamelincourt, in Handbook of Vibrational Spectroscopy, Vol. 2, 1419, Wiley (2002).

2. ‘Mid-Infrared Transmission Microspectroscopy,’ A.J. Sommer, in Handbook of Vibrational Spectroscopy, Vol. 2, 1369, Wiley (2002).

3. A. Canas, R. Carter, R. Hoult, J. Sellors, and S. Williams, Spatial Resolution in Mid-IR ATR Imaging: Measurement and Meaning, FACCS Conference (2006).

4. ‘Spatial Resolution in FT-IR ATR Imaging,’PerkinElmer Technical Note No. 007641_03 (2006).

5. W.S. Rasband and J. Image, U.S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/(1997-2006).




2020-01-15 15:13:35 1373 0
大尺寸微塑料样品的ATR-红外光谱法检测

作者:查姗姗

       如果利用常规的透射法对大尺寸(肉眼可见)的微塑料进行定性,需要对样品进行破坏(热压膜或者溶解后涂抹法),无法做到原位检测。借助ATR(衰减全反射)法,可以直接、原位地对样品进行检测。

      本文介绍了利用珀金埃尔默Frontier红外光谱仪对微塑料样品进行ATR-红外光谱法检测的实例。

      -适于大尺寸微塑料(> 100 μm)的定性 ;

      -有效减少样品前处理工作,实现原位检测 ;

      -钻石压头,不易磨损,便于清洁 ;

      -智能型压力传感器保证压头与样品间实现Z优接触,提升仪器灵敏度与数据重复性 ;

      -ATR模式可被仪器自动识别,并且软件可以实时显示压力值,保证测试条件的一致性。

       检测过程: 样品经过前处理净化后,直接挑拣出来放在ATR附件的测试晶体上,旋下ATR压力杆压紧样品,即可开始采集谱图。

实际海水样品中微塑料的定性检测-ATR法直接检测并谱库检索结果:A-聚乙烯,B-涤纶,C-PET,D-聚苯乙烯 


       由实验结果可见,利用ATR-红外光谱法对大尺寸微塑料样品进行检测,具有过程简便、结果准确、灵敏度高等优势。




2019-12-30 13:57:37 602 0
联用技术在微塑料分析中的应用

2019-06-10 13:42:52 147 0
显微技术的应用
 
2018-11-11 09:15:23 379 0
原位细胞3D切割成像技术基于青鳉胚胎组织的单细胞提取
      单细胞的原位组织提取一直以来都是一项十分困难的工作,这主要受制于组织之间连接致密难以消化,而机械力往往很难精确地将单个细胞与组织完整的分离。激光切割具有传统切割技术所难以匹及的切割精度,是目前一种比较理想的切割手段,因此围绕激光切割技术的相关显微产品也孕育而生,并在科研领域中越来越受到关注。但是激光切割也有其局限性,首先显微激光切割往往要从表面开始,无法对深层组织进行切割;另一方面激光的光源往往采用紫外激光光源,这种类型的光源很容易造成组织灼伤,从而影响切割下来样品的品质,因此激光切割的应用发展也受到了诸多限制。

      如今ROWIAK公司推出的一款全新的单细胞分离系统有望解决这一难题。它采用了近红外双光子激光切割技术,在保留了激光切割精度优势的同时,采用近红外波长的激光从而避免了激光切中对组织灼烧的问题。因此能够实现jing准的原位组织中的单个细胞的分离。
 
 
双光子3D组织切割成像系统TissueSurgeon
 
 
发育中的青鳉胚胎
 
      青鳉是一种成熟的模式生物,常用于分析发育和发育过程中的细胞信号神经生物学研究。其中使用表达荧光蛋白的转基因胚胎是一种揭示胚胎发育的良好方法。随着基因技术的发展,研究者们越来越多地开始关注这些标记细胞中转录组中的信息。虽然单细胞测序技术发展迅速,但是从组织中获得单细胞的手段却十分有限。目前几乎没有手段能够直接在组织的原位上快速获取一个细胞,但是基于ROWIAK双光子切割技术,研究者成功地在这方面取得了一些进展。
 
 
青鳉胚胎中感知神经中表达mcherry的细胞成像
 
      研究者为了研究青鳉感觉神经分泌细胞细胞群中特定表达m-cherry的转基因细胞的内部遗传信息,将ROWIAK双光子3D组织切割成像系统与传统的显微操作系统进行结合,成功实现了对目标细胞的原位分离。

      研究者首先利用双光子3D组织切割成像系统对青鳉胚胎中的mcherry细胞进行了定位,然后根据其细胞群的形态设定了切割部位,随后系统根据预先设定的范围进行切割。待切割完成后使用玻璃微管移液器将目标的细胞部位直接取出,即获得了目标组织区域。这种方法能够在不破坏样品原位信息的情况下将感兴趣的部位直接jing准的分离,这对于揭示生物体的基因表达情况具有着深远的意义。
 
从青鳉胚胎中分离特定表达mcherry的细胞团
 
参考文献:
Wittbrodt, J. et al. Medaka — a model organism from the Far East. Nature Reviews Genetics 3, 53-64.
Yamamoto, T. (ed.) MEDAKA (Killifish): Biology and strains. Yamamoto, T. (ed.) Keigaku Pub. Co., Tokyo, 1975, pp.365.
Kristin Tessmar-Raible et al.Removal of fluorescently-labeled sensory-neurosecretory cells from forebrain of transgenic Medaka embryos, focusonmicroscop. 2011.
2019-08-23 11:30:01 405 0
谁能告诉我显微红外和显微红外的区别在哪儿?各有什么特点?
我现在知道貌似都能得到图谱和照片。那显微红外成像技术有何优势呢???
2018-11-09 17:39:12 445 0
探秘肿瘤微环境,原位“看透”细胞因子

细胞因子是肿瘤微环境(Tumor Microenvironment,TME)中细胞通讯的关键介质,在癌症的发生、发展、治 疗和预后等多个方面发挥重要作用。在过去的 40 年中,细胞因子和细胞因子受体作为癌症靶点或癌症治 疗方法得到了广泛的研究。目前公认的临床前治 疗策略为增强干扰素和白细胞介素(包括 IL-2 ,IL-7 ,IL-12 和 IL-15 )的生长抑 制和免疫刺激作用,或抑 制细胞因子(如 TNF ,IL-1β 和 IL-6 )的炎症和促进肿瘤的作用[1]。


图 1 . 细胞因子在肿瘤微环境中的作用


特定细胞因子的表达也与肿瘤细胞的高存活率和高转移性密切相关。其中促炎细胞因子 IL-6 和 IL-8 与多种癌症相关,包括淋巴瘤、黑色素瘤、乳腺癌、前列腺癌和结肠直肠癌等 [2,3]。因此,分析细胞因子的表达是一种重要的诊断工具和预测癌症预后的关键因素。


非放射性的 RNA 原位杂交技术(ViewRNA ISH)是一种高灵敏度的检测细胞因子表达的有效方法,并且可以对 1 至 4 个 mRNA 目标进行多重分析。


检测原理如下图所示:

图 2 .  ViewRNA ISH 检测原理


安捷伦BioTek Cytation 5 多功能细胞成像微孔板检测系统,可容纳多达四个荧光通道同时成像,快速并出色地成多色荧光成像。仪器配备的高内涵分析软件可自动计算细胞内 RNA 的表达水平。Cytation 5 活细胞成像工作站结合ViewRNA ISH,为细胞因子研究提供了一种高效率、高灵敏度和可重复的检测方法。


实验案例分享


 实验一.细胞因子mRNA的成像和分析 

为研究细胞因子mRNA 在不同营养条件下的表达情况,设置两组对照实验。阳性对照细胞培养于完全培养基中,而阴性对照细胞经过 18 小时的血清饥饿处理。随后加入 ViewRNA 探针以标记 IL-6 、IL-8 和 ACTB mRNA ,在Cytation 5 上分别使用 RFP 、GFP 、Cy5 和 DAPI 通道对探针进行成像完成 ISH 细胞分析。图像结果表明:细胞因子mRNA 的表达在营养匮乏的条件下会显著降低。



图 3 . 阳性和阴性对照组成像。HCT116 放大 20 倍图像作为( A )阳性对照和( B )阴性对照。MDA-MB-231 细胞放大 40 倍的图像作为( C )阳性对照和( D )阴性对照。蓝色:DAPI 染色的细胞核;绿色:标记 IL-8 mRNA ;橙色:标记 IL-6 mRNA ;红色:标记 ACTB mRNA 。


接下来为了定量分析细胞因子表达,首先在 Cytation 5 的 DAPI 通道下进行细胞核计数,以确定每孔的细胞数量(图 4A )。然后分别在GFP 、RFP 通道进行细胞因子探针( IL-6 或 IL-8 )的荧光信号分析(图 4B )。通过细胞荧光信号的比率评估不同实验条件下的细胞因子表达(图 5 )。


图 4 . 每个细胞的荧光信号分析。( A ) 使用 Agilent-BioTek Gen5 软件进行细胞分析圈选出 DAPI 标记的细胞核;( B ) 荧光标记的 IL-8 信号的图像分析。


如图 5 所示,使用 ViewRNA ISH 和 Cytation 5 这一组合准确的量化了细胞内 IL-6 和 IL-8 mRNA 的表达。


图 5 . MDA-MB-231 细胞中 IL-8 表达和 HCT116 细胞中 IL-6 表达,并以细胞数目进行校正。


 实验二.诱导细胞因子 mRNA 的表达 

使用不同剂量的 IL-1β 刺激 DU145 细胞,以分析细胞因子的 mRNA 的表达(图6)。图 7 结果显示:虽然 IL-6 和 IL-8 的 mRNA 表达增加,但 IL-8 的表达变化更为显著,这与先前研究结果一致[4]。IL-1β 的最 高剂量下,这两种细胞因子的表达减少则是由于细胞毒性。这验证了该检测方法的可行性与稳定性。


图 6 . 不同浓度的 IL-1β 刺激下的 IL-6 、IL-8 和 ACTB 荧光 mRNA 探针信号 ( A ) 0 ng/mL;( B ) 0.02 ng/mL ;0.128 ng/mL;( D ) 0.8 ng/mL。蓝色:DAPI染色的细胞核;绿色:标记的IL-8 mRNA;橙色:标记的 IL-6 mRNA ;红色:标记的 ACTB mRNA 。


图 7 . 不同浓度的 IL-1β 刺激下 DU145 细胞中 IL-6 和 IL-8 mRNA 的表达。


 实验三.抑 制细胞因子 mRNA 的表达 

研究表明丝裂原活化蛋白激酶( MAPK )可调节 IL-8 ,并证明用 MAPK/ERK 抑 制剂 U 0126 治 疗可减少 DU145 和 MDA-MB-231 细胞中的炎症细胞因子[4,5]。为了确认这一现象并验证 ViewRNA ISH 和 Cytation 5 这一组合的能力,将不同浓度的 U 0126 加入到每种细胞类型中孵育 30 分钟。然后用 1 ng/mL 的 IL-1β 刺激 DU145 细胞达 3 小时,而 MDA-MB-231 细胞未被刺激。使用 GFP 和 RFP 通道进行细胞计数和图像分析以评估在 U 0126 治 疗后 IL-8 和 IL-6 细胞因子 mRNA 的表达。采集的图像(图 8 )和计算的荧光信号强度 (图 9 )证实了 U 0126 的抑 制作用。此外,也验证了该方法的灵敏度,可以准确识别给予抑 制剂后 mRNA 的表达变化。



图 8. U 0126 抑 制 IL-8 mRNA 的表达。图像显示了在不同浓度的 U 0126 处理后 ( A-E ) MDA-MB-231 细胞内 IL-6 、IL-8 和 ACTB 荧光 mRNA 探针信号;( F-J ) 为 DU145 细胞。蓝色:DAPI 染色的细胞核;绿色:标记的 IL-8 mRNA ;橙色:标记的 IL-6 mRNA ;红色:标记的 ACTB mRNA 。


图 9 . U 0126 治疗后 IL-8 和 IL-6 mRNA 在 MDA-MB-231 和 DU 145 细胞中的表达


结 语

ThermoFisher 的 ViewRNA ISH 细胞分析试剂盒和探针提供一种灵敏的方法来检测 mRNA 表达。该方法在安捷伦BioTek Cytation 5 细胞成像系统的加持下得以更更快地采集多荧光通道的图像,并更精 准的计算出每一个细胞的荧光信号强度。这种检测、成像和分析的完 美结合提供了一种灵敏、灵活和高通量的方法用以检测细胞因子 mRNA 的表达。


参考文献:

[1] Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol. 2022 Apr;19(4):237-253.

[2] Kampan NC, Xiang SD, McNally OM, Stephens AN, Quinn MA, Plebanski M. Immunotherapeutic Interleukin-6 or Interleukin-6 Receptor Blockade in Cancer: Challenges and Opportunities. Curr Med Chem. 2018;25(36):4785-4806.

[3] Vecchi L, Mota STS, Zóia MAP, Martins IC, de Souza JB, Santos TG, Beserra AO, de Andrade VP, Goulart LR, Araújo TG. Interleukin-6 Signaling in Triple Negative Breast Cancer Cells Elicits the Annexin A1/Formyl Peptide Receptor 1 Axis and Affects the Tumor Microenvironment. Cells. 2022 May 20;11(10):1705.

[4] Kooijman R, Himpe E, Potikanond S, Coppens A. Regulation of interleukin-8 expression in human prostate cancer cells by insulin-like growth factor-I and inflammatory cytokines. Growth Horm IGF Res. 2007 Oct;17(5):383-91.

[5] Chelouche-Lev D, Miller CP, Tellez C, Ruiz M, Bar-Eli M, Price JE. Different signalling pathways regulate VEGF and IL-8 expression in breast cancer: implications for therapy. Eur J Cancer. 2004 Nov;40(16):2509-18. 


2022-12-06 13:04:21 392 0
雷达物位计的技术方案
 
2018-11-26 10:35:23 269 0
微透镜的大视野3D成像


微透镜


(a) 为微透镜的大视野3D图像,通过hitachi MAP 3D 将多张3D 图像拼接而成。

(b) 为(a)中红框部分的形貌像。通过颜色标尺很容易确定高度信息。

(c)(d)是提取的图.1(b)中划线区域的结果,可以获得每个透镜(箭头 0-1, 2-3)的水平距离、垂直高度以及顶部和底部的角度。

所以,使用Hitachi Map 3D可以获得大视野3D图像和截面轮廓信息。




(a)拼接后的3D图像(x2k), (b)红框内的形貌图

(c)(b)中划线区域的截面



观察机型:FlexSEM1000 

观察条件:5 kV, 2000倍, 30Pa 软件:Hitachi Map 3D


Material

【大视野3D观察】



FlexSEM1000



2022-12-08 11:49:09 182 0
亚微米红外拉曼同步光谱测量技术用于颗粒物分析—微塑料,纤维和大气气溶胶

题:The mIRage IR+Raman Dual Channel Microspectroscopy: Particle and Contamination Analysis


[报告简介]

    颗粒物无处不在,气溶胶、PM2.5、灰尘、棉絮、污染物、微塑料、药物粉末和化学残留物对生活的方方面面都有着很大的影响。对这些微粒的积极识别有助于确定它们在人体内的潜在影响,并可以揭示这种物质的来源,作为未来消除这种影响的一步。

    然而,识别单个粒子的化学组成对分析科学提出了重大挑战,因为颗粒物的尺寸通常比红外光的波长更小。传统较弱的红外光源加上小于10 µm的颗粒尺寸,会导致明显的光谱噪声,难以进行有效的组成识别。更加复杂的是,小颗粒锐利边缘的散射像差会导致红外峰的漂移和异常的带形状。这些困难大大降低了人们正确解释小粒子红外光谱结果的信心。通常认为,传统的FTIR仅可以可靠地分析大于20 µm的粒子。尽管使用了新型红外激光器(如QCL激光器),小颗粒的红外吸收变化仍然很小,实际的空间分辨率在5 ~ 20微米之间, 而由于散射像差引发的数据和光谱信息的可译性差也未能得到改善。

    PSC (Photothermal Spectroscopy Corp. )公司新发布的mIRage亚微米IR+Raman显微镜将独特的光学光热红外(O-PTIR)技术与同步拉曼光谱技术相结合,直接解决了上述挑战。该系统利用固定波长的探测光束直接感应材料的光热变化,从而提供可靠的红外吸收光谱。这种方法对小到几百纳米的粒子提供了较高的灵敏度。尽管粒子直径很小,这些光谱的红外吸收带不含任何散射像差,并可在常规红外数据库中搜索来实现快速的未知物种鉴定。另外同步拉曼显微镜为O-PTIR光谱在同一位置、同一时间、同一分辨率下提供了补充和验证的结果。这一独特的功能只需简单的鼠标点击,即可提供无与伦比的物种识别信心,并显著节省时间,从获得两个独立的光谱数据通道。

    在这次研讨会中,Mike Lo博士将深入探讨基于O-PTIR技术的mIRage显微光谱和IR+Raman技术, 并结合几个具体的应用案例,来探讨它们在分析颗粒物方面的显著优势。我们诚挚欢迎各位前来Quantum Design北京实验室进行mIRage红外+拉曼同步测量系统样机的参观和使用。

[注册报名]

PC端用户点击https://live.vhall.com/681269078报名,手机用户请扫描上方二维码进入报名

[主讲人介绍]

Michael K. Lo  博士

美国加州大学洛杉矶分校获得化学和生物分子工程博士学位,并获得项目管理专业认证 (PMP)。目前是美国PSC公司亚太地区应用和业务发展经理,拥有15年以上的仪器相关经验,涉及从IR/Raman, AFM和电子显微镜到材料合成和聚合物组成调配等研究领域。他在超越传统光学衍射极限的红外仪器的开发和应用方面有着丰富的经验。

[报告时间]

开始  2020年07月24日  14:00

结束  2020年07月24日  15:00

请点击注册报名链接,预约参加在线讲座

[直播好礼]

看直播赢好礼,更多大奖:蓝牙运动手环、智能测温水杯、多功能数据线... ...


2020-07-20 16:30:26 615 0
显微技术的电子显微镜的发展
 
2018-12-09 23:01:21 319 0
半导体和钙钛矿材料的高光谱(显微)成像

目前在光伏业界,正在进行一项重大努力,以提高光伏和发光应用中所用半导体的效率并降低相关成本。这就需要探索和开发新的制造和合成方法,以获得更均匀、缺陷更少的材料。

无论是电致还是光致发光,都是实现这一目标的重要工具。通过发光可以深入了解薄膜内部发生的重组过程, 而无需通过对完整器件的多层电荷提取来解决复杂问题。

HERA高光谱照相机是绘制半导体光谱成像的理想设备,因为它能够快速、定量地绘制半导体发射光谱图,且具有高空间分辨率和高光谱分辨率的特性。


硅太阳能电池的电致发光光谱成像

光伏设备中的缺陷会导致光伏产生的载流子发生重组,阻碍其提取并降低电池效率。电致发光光谱成像可以揭示这些有害缺陷的位置和性质。

"反向"驱动太阳能电池(即施加电流)会产生电致发光,因为载流子在电极上被注入并在有源层中重新结合。在理想的电池中,所有载流子都会发生带间重组,这在硅中会产生1100 nm附近的光(效率非常低)。然而,晶体结构中的缺陷会产生其他不利的重组途径。虽然这些过程通常被称为"非辐射"重组,但偶尔也会产生光子,其能量通常低于带间发射。捕获这些非常罕见的光子可以了解缺陷的能量和分布。

在本实验中,我们使用了HERA SWIR (900-1700 nm),它非常适合测量硅发光衰减。测量装置如图1所示:HERA安装在三脚架上,在太阳能电池上方,连接到一个10A的电源。640×512像素的传感器安装在样品上方75厘米处,空间分辨率约为250微米。

图1. 实验装置

最重要的是,HERA光学系统没有输入狭缝,因此光通量非常高,是测量极微弱光发射的理想选择。

图2.A和2.B显示了两个波长的电致发光(EL)图像:1150 nm(带间发射)和1600 nm(缺陷发射),这是4次扫描的平均值(总采集时间:5分钟)。通过分析这些图像,我们可以看到,尽管缺陷区域的亮度远低于主发射区域,但它们仍被清晰地分辨出来。此外,具有强缺陷发射的区域的带间发射相对较弱。

我们可以注意到有几个区域在两个波长下都是很暗的;这可能是由于样品在运输过程中损坏了电池造成的。

图2.C中以对数标尺显示了小方块感兴趣区域(图2A和2B中所示)的光谱。

图 2.A 和 B:两个选定波长(1150 nm 和 1600 nm)的电致发光(EL)图像。C:A和B中三个不同区域对应的电致发光光谱(图像中的彩色方框)。


金属卤化物钙钛矿薄膜的光致发光显微研究

通过旋涂等技术含量低、成本效益高的方法,可以制造出非常高效的太阳能电池和LED。这些方法面临的一个挑战是在微观长度的尺度上保持均匀的成分。光致发光显微镜是表征这种不均匀性的一个特别强大的工具。

HERA高光谱相机可以连接到任何显微镜(正置或倒置)的c-mount相机端口,并直接开始采集高光谱数据,无需任何校准程序。

图3. 与尼康LV100直立显微镜连接的HERA VIS-NIR。

在本实验中,我们使用HERA VIS-NIR(400-1000 nm)耦合到尼康LV100直立显微镜(图3)来表征两种卤化物前驱体合金的带隙分布。将两种卤化物前驱体合金化的优点是能够调整材料的带隙;然而,这两种成分经常会发生逆混合,从而导致性能损失。

本实验的目的是检测这种逆混合现象:事实上,混合比的局部变化会改变局部带隙,从而导致发射不同能量的光子。

在这种配置中,激发光来自汞灯,通过带通滤光片在350 nm处进行滤光,并通过发射路径上的二向色镜将其从相机中滤除。

HERA的高通量使其能够在大约1分钟的测量时间内收集完整的数据立方体(130万个光谱)。

图4.样品的光谱综合强度图(A:全尺寸;B:放大)。

图4.A和4.B分别显示了所有波长(400-1000 nm)总集成信号的全尺寸和放大图像,揭示了长度尺度在1 µm左右的明亮特征。

当我们比较亮区和暗区的光谱时(图5.B中的黑色和红色曲线),我们发现暗区实际上也有发射, 不仅强度较低,而且波长中心比亮区短。事实上,光谱具有双峰形状,很可能与逆混合前驱体的发射相对应。图5.A的发射图清楚地显示了带隙的这种变化。

我们现在可以理解为什么低带隙区域看起来更亮了--载流子可能从高带隙区域弛豫到那里,并且在发生辐射重组之前无法返回。

图5.A:显示平均发射波长的强度图。B:亮区和暗区的发射光谱(正常化)。

东隆科技作为NIREOS国内总代理公司,在技术、服务、价格上都具有优势。如果您有任何产品相关的问题,欢迎随时来电垂询,我们将为您提供专业的技术支持与产品服务。

2023-07-25 10:40:14 261 0
显微维氏硬度计的技术规格
 
2018-12-06 06:35:11 386 0
功能性磁共振成像的技术
 
2018-12-07 22:43:21 457 0

1月突出贡献榜

推荐主页

最新话题