仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

rpm技术在模具制造方面的应用中有哪些常用的工艺方法

圣诞节看电视剧 2017-05-23 09:42:26 675  浏览
  •  

参与评论

全部评论(1条)

  • hedian12300 2017-05-24 00:00:00
    软质模具生产制品的数目一般为50~5000件,对于中大批量的产品,仍然需要传统的硬质模具。硬质模具主要用于砂型铸造、消失模的压型制作、注塑模以及简易非钢质拉伸模。硬质模具制造主要有以下几种方法。 (1)电火花加工法 电火花加工法是利用RPM原型制作EDM电极,然后利用电火花加工制作钢模。其制作过程一般为:RPM原型→三维砂轮→石墨电极→钢模。 (2)熔模精密铸造法 在批量生产硬质模具时可采用熔模精密铸造法。该方法是利用RPM原型或根据原型翻制的软质模具生产蜡模,然后利用熔模精铸工艺制作钢质模具。大部分的RPM原型都可以作为熔模精密铸造的母模。其工艺路线是:RP原型(中间过渡模)→制作蜡型→熔模铸造→成型/处理→模具。 (3)陶瓷型精密铸造法 在陶瓷型精密铸造中,通常采用的母模(如木模、石膏模和金属模等)存在着加工困难、精度难以保证、制造周期长、使用寿命短和本钱高等题目,因此对于复杂外形的零件将RP原型技术直接用于陶瓷型铸造,可比传统加工方法节省工时,降低本钱。其工艺路线是:RP原型→软模→移出母模→浇注/喷涂浆料→浇注金属→成型/处理→模具。 (4)金属熔射喷涂制造法 金属熔射喷涂制造模具的方法是在RP原型或过渡模型为母模的表面上,用电弧或等离子喷涂雾状金属,形成金属硬壳层,移往母模后,在金属壳背面补铸金属基合成材料或环氧树脂,形成硬背衬,经后处理得到金属表面与硬背衬构成的模具。用该方法制作的模具机械性能较好,精度也轻易保证,可以制作工作压力较高的模具,模具寿命可达1000~30000件。 (5)铝基合成材料制造法 以RP原型为母模,浇注硅橡胶等软材料形成软模具,再在软模具中浇注室温下液态铝基合成材料形成型腔,型腔经后处理制得模具。由于是在室温下浇注,避免了高温熔化金属浇注导致的较大翘曲变形,精度轻易得到保证。用这种方法制作的注塑模具寿命一般为500~5000件(取决于被注射成形零件的材料和外形)。 (6)化学粘结陶瓷材料制造法 以RP原型为母模,浇注硅橡胶等软材料形成软模具,再在软模具中浇注化学粘结陶瓷材料(CBC),在205℃下固化形成型腔,经处理后制得模具。用该法制得的模具寿命一般为300件。其工艺路线为:快速原型制作纸质母模→(浇注硅橡胶、环氧树脂、聚氨酯等软材料)构成软模→移往母模→在软模中浇注化学粘结陶瓷(CBS)→在205℃下固化CBS型腔→型腔表面抛光加进浇注系统和冷却系统→小批量生产用注塑模。 (7)铸造法 用快速原型作为石蜡铸造模具的蜡型或砂型铸造模具的模型,制作铸造壳型或砂型,然后浇注出金属模具来,但铸造出来的模具一般还要经过打磨或少量切削加工。 (8)钢丝模具 钢丝模具是利用细钢丝在某个方向沿快速原型的外形排列而形成模腔的模具。钢丝可采用机械紧固,也可在钢丝上涂抹或在钢丝间注进环氧树脂或低熔点合金等作为粘结剂,压紧固化后即可。模腔内壁可冷喷涂金属合金,以进步使用寿命和表面质量。钢丝模不但适合生产塑料制品,还可用于生产金属制品。 (9)电铸制模 电铸制模法的原理和过程与金属喷涂法比较类似。它是采用电化学原理,通过电解液使金属沉积在原型表面上,再背衬其他充填材料来制作模具的方法。电铸法制作的模具复制性好且尺寸精度高,适合于精度要求较高、形态均匀一致和外形花纹不规则的型腔模具,如人物造型模具、儿童玩具和鞋模等。 四、结论 总之,用快速成形技术制作模具,既避开了复杂的机械切削加工,保证模具的精度,又可以大大缩短制模时间、节省制模用度,与传统的数控加工模具方法相比,周期和用度都降低了1/3~1/10左右,对于外形复杂的精密模具,优点尤为突出。但是这种模具制作方法,目前还存在着所制模具寿命相对较短的缺点,即使是金属表面加硬背衬的模具,其使用寿命也不及真正的金属模,所以快速成形模具适合于单件小批量生产。

    赞(15)

    回复(0)

    评论

热门问答

rpm技术在模具制造方面的应用中有哪些常用的工艺方法
 
2017-05-23 09:42:26 675 1
DNA测序技术在生物学,医学方面的应用
 
2012-06-27 21:40:44 441 1
模具制造工艺中先进的加工技术有哪些
 
2016-11-30 23:57:35 511 1
脂肪酸在化妆品方面的应用
 
2017-11-23 10:28:59 502 1
压力传感器在航空航天方面的应用
做好要有结构和原理的(带图)... 做好要有结构和原理的(带图) 展开
2018-11-13 05:18:39 428 0
稀土在航空航天方面的应用
要有针对性,至少从四个方面进行论述,每个方面都要做到详细,具体。要有具体的例子,Z好细分到具体的稀土元素在具体的方面上的应用及前景。Z好有图片,有链接Z重要的,要有条理!... 要有针对性,至少从四个方面进行论述,每个方面都要做到详细,具体。要有具体的例子,Z好细分到具体的稀土元素在具体的方面上的应用及前景。 Z好有图片,有链接 Z重要的,要有条理! 希望能有应用方面的图表,能够直观地反映问题 提醒一下 额t囧 四个反面都是指在航空航天方面,不是农业、新材料什么的 展开
2010-10-30 10:07:27 1243 7
ALD在钙钛矿方面的应用

    “碳达峰”和“碳中和”一直都是能源领域的热点话题,作为助力“双碳”战略的生力军,光伏产业具有举足轻重的地位。目前光伏的主力是硅太阳能电池,它们具有效率高、稳定性好、产业链完备、使用寿命长的优势。然而,晶硅电池的转换效率到达瓶颈,且从硅料到组件至少经过4 道工序,单位制程需要3 天以上,同时还需要大量人力、运输成本等。为了让太阳能的利用更加便捷、高效且廉价,科学界和工业界正在研制新型太阳能电池;钙钛矿太阳能电池就是备受关注的后起之秀,钙钛矿叠层效率极限可达50%,而钙钛矿组件在单一工厂完成生产,原材料经过加工后直接成组件,没有传统的“电池片”工序,大大缩短制程耗时。但是,如何制备大面积且能保持较高效率的钙钛矿太阳能电池,依然是难题,也成了制约其产业化应用的瓶颈。

       原速ALD在钙钛矿电子传输层、空穴传输层、钝化层、封装阻水层等领域已取得了突破性进展,获得了业界的认可。为了更高效地服务于世界光伏产业高地,原速也在上海建立了技术研发中心。截止目前,公司已形成服务于钙钛矿电池研发、中试、100MW、 GW级量产的产线ALD技术解决方案。

1、ALD-SnO2 应用于钙钛矿电池电子传输层 

• ALD 相比于传统沉积技术,在制备超薄膜时具有更优异的均匀性和保形性,以及缺陷更少的优点

 

2、ALD-NiO 应用于钙钛矿电池空穴传输层 

• ALD 可用于制备性能优异的超薄(<10 nm)NiO 空穴传输层

3、ALD 应用于钙钛矿电池钝化层 

• ALD 超薄膜可以应用于界面处,通过和悬挂键反应的方式减少表面缺陷,或排斥载流子,达到钝化的效果

4、ALD 应用于钙钛矿电池封装 

• 致密的 ALD 膜可达到有效的阻水氧的效果


2023-07-21 10:25:31 294 0
ALD在锂电池方面的应用

       锂离子电池在充放电过程中,锂离子在正负极之间穿梭。在充电过程中,锂离子从正极脱出经过电解液和隔膜到达负极发生反应。在放电过程中锂离子从负极返回正极嵌入正极材料。在循环过程中,正极材料面临许多的问题如自身体积的变化,晶体结构的改变,界面结构的退化等导致的容量衰减。同样的,负极材料也面临着体积膨胀,枝晶的生长导致的负极材料的粉碎溶解、从集流体表面剥离脱离、电接触变差,短路等一系列问题,这些问题导致材料的容量和循环性能严重下降,甚至电池的起火爆炸。

       原子层沉积(ALD)薄膜沉积可以合成具有原子级精度的材料,基于自限的膜纳米级的控制,可以实现多组分膜的化学成分控制、大面积的薄膜/工艺的可重复性,具备低温处理以及原位实时监控等技术特征。该技术在锂离子电池,太阳能电池,燃料电池以及超级电容器中都具有广泛的应用。

      ALD已经被公认是一种非常有前途的工具可以用来解决锂离子电池以及其他电能储存设备所面临的问题。ALD在锂离子电池中的应用主要分为两个方面:(1)高性能电池电极,隔膜,集流体材料等的制备;(2)表面修饰。其应用主要总结在下图:

1、ALD在电极材料及电解质制备中的应用

a、ALD 用于负极材料的制备

采用ALD技术制备的负极材料主要集中在过渡金属氧化物(TMOs), 如RuO2, SnO2, TiO2和ZnO. 其能量密度比传统的石墨电极高。同时,为了解决TMOs负极材料所面临的挑战,如SnO2在循环过程中较大的体积变化,TiO2低的电子跟离子电导率,由超高电导率的碳基材料如石墨烯,碳纳米管以及Mxenes与TOMs组成的复合负极材料可以很好的融合两者的优势。

如:ALD制备的TiO2/CNF-CFP(carbon fiber paper)负极,具有高可逆容量(272 mAh g−1 at 0.1 A g−1),超高倍率性能(133 mAh g−1 at 40 A g−1) 以及超长循环稳定性(≈ 93%容量保持率在10000 圈 at 20 A g−1)。

b、用于正极材料的制备

通过ALD技术制备的正极材料有非锂化正极如V2O5, FePO4; 锂化正极如LiFePO4, LiCoO2以LixMn2O4

如TiO2/V2O5/@CNT paper正极在100 mA g-1的电流密度下的放电比容量为400 mAh g-1,达到了理论放电比容量。 同时,正极材料V2O5的溶解问题可以通过TiO2层得到,同时不损失容量跟倍率性能。

c、SSEs固态电解质的制备

归功于其安全性及循环稳定性,全固态锂离子电池近来成为了研究的热点。ALD可以解决全固态锂离子电池所面临的两大关键性挑战:a.高界面阻抗,b.低离子电导率。 最近采用ALD制备的固态电解质有LiPON, Li7La3Zr2O12, LixAlySizO, LixTayOz, LixAlyS and Li2O-SiO2.这些含锂SSEs提供了一个关键的技术平台来制备高能量密度,长寿命以及安全的可充放电池。如下图所示,ALD制备的LLZO为制备3D全固态锂离子微电池提供了一条技术路线。

2、ALD在电池电极,隔膜,集流体等表面修饰领域的应用

a、ALD对负极表面修饰的应用

在负极材料中,ALD表面/界面修饰技术主要为了解决从SEI膜引发的系列问题。在循环过程中,SEI膜的大量形成以及体积变化会引起电极的破坏,从而引发新的暴露面导致容量的衰减。如在石墨负极表面沉积Al2O3可以在电池循环了200圈之后有效地保持98%的首圈容量。

锂金属作为负极材料的未来之星,在锂金属的沉积跟剥离过程中,锂枝晶的生长导致电池短路的问题亟待解决。采用ALD技术在锂金属表面构建例如有机/无机复合人工SEI膜,可以有效地抑制锂枝晶的生长。

b、ALD对正极表面的修饰作用

为了解决正极材料表面所面临的电解液分解,相变,析氧以及过渡金属溶解等问题,采用ALD技术在正极材料表面沉积保护层可以作为物理阻挡层或者HF清除层,从而有效地提高电池的循环稳定性跟倍率性能。在正极材料(层状结构:LiCoO2, LiNixMnyCozO2,富锂(Li-rich)xLi2MnO3·(1 − x)LiMO2(M = Mn, Ni, Co),尖晶石结构LiMn2O4)表面沉积的ALD镀层主要可以分为四类:a金属氧化物:Al2O3, TiO2, ZrO2, MgO, CeO2, Ga2O3; b氟化物:AlF3, AlWxFy; c磷化物:AlPO4,FePO4; d含锂化合物:LiAlO2, LiTaO3, LiAlF4


2023-07-25 14:27:53 358 0
电法勘探在城市基建中有哪些方法应用
 
2017-03-30 06:27:23 589 1
红外热成像仪在建筑电气方面的应用
 
2016-07-21 03:16:59 365 1
互联网大数据在舆情方面的应用有哪些?
 
2016-07-05 00:29:21 262 4
在模具制造中,加工工艺规程主要有哪些作用
 
2016-10-18 18:30:12 461 2
模具制造工艺的特点
简单叙述模具制造工艺的特点
2018-03-03 17:18:07 512 1
简述x射线衍射技术在科学研究中有哪些应用
 
2017-05-30 20:02:38 498 1
pcb中掌握工艺方面的工作能力有哪些
 
2017-10-01 12:21:35 351 1
模具制造方法有哪些?
模具制造方法有哪些?
2016-12-01 08:22:24 400 1
手持光谱仪在贵金属检测方面的应用

  手持光谱仪在贵金属检测方面有着广泛的应用。以下是几个常见的应用领域:

  贵金属鉴别:手持光谱仪可以通过分析贵金属的光谱特征,确定其成分和纯度。通过比对样品光谱与已知贵金属光谱数据库,可以快速识别和鉴别金、银、铂等贵金属。

  市场监管:在贵金属市场监管中,手持光谱仪可以帮助监测机构或消费者验证贵金属产品的真伪。通过对样品进行光谱分析,可以确认产品是否含有标称的贵金属成分,防止假冒伪劣产品出现。

  防伪溯源:手持光谱仪可以用于贵金属产品的溯源和防伪。通过建立贵金属产品的光谱数据库,可以对产品进行标识,并通过光谱特征进行溯源验证,确保产品的来源和真实性。

  公安安全:手持光谱仪可用于犯罪现场勘查中贵金属物证的鉴定。通过采集物证样品的光谱,与参考光谱对比分析,可以确定物证中是否含有贵金属,提供调查破案的线索。

  环境监测:贵金属在环境中的存在常常与污染有关。手持光谱仪可以用于现场快速检测土壤、水体和空气中贵金属的含量,帮助环保部门进行环境监测和污染源追踪。

  手持光谱仪的应用在贵金属领域具有非常重要的意义,它能够提供快速、准确的贵金属分析结果,为各个领域的工作提供支持和保障。

  赢洲科技作为仪景通一级品牌代理商,拥有完整的售前售后服务体系,如有仪器购买或维修需求,可联系赢洲科技为您提供原装零部件替换、维修。

2023-08-18 10:17:30 294 0

1月突出贡献榜

推荐主页

最新话题