确定独立平面磷脂双层膜的弯曲刚度
-
我们描述了一种方法来确定膜弯曲刚度从电容测量大面积,独立,平面,生物膜。脂质膜的弯曲刚度是一种重要的生物力学特性,通常在囊泡中进行光学测量,但在平面无支撑系统中难以量化。为了实现这一目标,我们同时对由DOPC和DOPG磷脂组成的独立的、毫米面积的平面脂质双层成像并施加电势,以测量膜的杨氏(弹性)模量。然后将双分子层建模为相邻的两层弹性薄膜,从薄膜对电场的机电响应计算弯曲刚度。利用DOPC,我们发现用这种方法测定的弯曲刚度与现有的用中子自旋回波测定囊泡、用原子力谱测定支撑脂质双层和用微管抽吸巨大单层囊泡的工作很好地一致。我们研究了不对称钙浓度对对称DOPC和DOPG膜的影响,并量化了由此产生的弯曲刚度变化。该平台提供了创建控制脂质组成和水离子环境的平面双层的能力,并具有不对称改变两者的能力。我们的目标是利用这种高度的成分和环境控制,以及测量物理性质的能力,在未来研究各种生物过程。
Zabala-Ferrera, O.; Liu, P.; Beltramo, P.J. Determining the Bending Rigidity of Free-Standing Planar Phospholipid Bilayers. Membranes 2023, 13, 129. https://doi.org/10.3390/membranes13020129
全部评论(0条)
热门问答
- 确定独立平面磷脂双层膜的弯曲刚度
我们描述了一种方法来确定膜弯曲刚度从电容测量大面积,独立,平面,生物膜。脂质膜的弯曲刚度是一种重要的生物力学特性,通常在囊泡中进行光学测量,但在平面无支撑系统中难以量化。为了实现这一目标,我们同时对由DOPC和DOPG磷脂组成的独立的、毫米面积的平面脂质双层成像并施加电势,以测量膜的杨氏(弹性)模量。然后将双分子层建模为相邻的两层弹性薄膜,从薄膜对电场的机电响应计算弯曲刚度。利用DOPC,我们发现用这种方法测定的弯曲刚度与现有的用中子自旋回波测定囊泡、用原子力谱测定支撑脂质双层和用微管抽吸巨大单层囊泡的工作很好地一致。我们研究了不对称钙浓度对对称DOPC和DOPG膜的影响,并量化了由此产生的弯曲刚度变化。该平台提供了创建控制脂质组成和水离子环境的平面双层的能力,并具有不对称改变两者的能力。我们的目标是利用这种高度的成分和环境控制,以及测量物理性质的能力,在未来研究各种生物过程。
Zabala-Ferrera, O.; Liu, P.; Beltramo, P.J. Determining the Bending Rigidity of Free-Standing Planar Phospholipid Bilayers. Membranes 2023, 13, 129. https://doi.org/10.3390/membranes13020129
- 细胞膜磷脂分子层是几层膜几层磷脂?那磷脂双分子层呢?
- 膜脂质过氧化进一步分解膜磷脂为什么可以增加自由基生成
- 怎么确定溶解氧测定仪的膜是否老化
- SDI平面麦拉膜是做什么的
- 双层共挤的吹膜机 吹出来的膜中间稍微有点厚,怎么回事?
- 以下哪类生物的细胞壁可能由脂单层膜而非脂双层膜所构成?
- 智慧树大学生网络课堂【单选题】以下哪类生物的细胞壁可能由脂单层膜而非脂双层膜所构成?A.植物B.动物C.细菌D.古菌... 智慧树大学生网络课堂【单选题】 以下哪类生物的细胞壁可能由脂单层膜而非脂双层膜所构成? A. 植物 B. 动物 C. 细菌 D. 古菌 展开
- 多种多样的阳离子磷脂
新冠疫情爆发后,mRNA相关技术获得了快速突破,多款mRNA新冠疫苗上市并展现出了相较于其他传统疫苗更高的保护率,使其逐渐成为研究宠儿。在mRNA疫苗中,一个核心要素就是构建一个mRNA的递送载体,而目前多通过脂质纳米粒(Lipidnanoparticle,LNP)来达到这一目的。
而LNP之所以可以作为递送mRNA的首要载体,首要原因就是得益于构建LNP时所使用的阳离子磷脂或可电离磷脂。因为在组装过程下,阳离子磷脂或可电离磷脂中带正电的头部基团可以与带负电的RNA磷酸骨干相互作用,通过静电吸附达到包载的目的。那么各种不同的阳离子磷脂其结构上又有什么相似和不同之处呢,今天小编就带大家了解一下。
早在1987年,研究者们就合成出了一种用于体外基因递送的阳离子磷脂DOTMA,用其制成的脂质体递送质粒DNA,包封率可达将近100%。后续大家熟悉的Lipofection体外转染试剂就是在此基础上构建的。图1中即为DOTMA的组成结构,可以看到其主要是由一个阳离子或可电离的头部基团、连接基团及疏水尾部组成。而且我们也可以根据3个组成基团的不同来区分不同的阳离子磷脂衍生物。图1. 阳离子磷脂DOTMA的化学结构和相关磷脂衍生物的结构组成
首先,不同的疏水尾部结构可以影响磷脂的pKa值、亲脂性、相转变温度等,胆固醇衍生物或碳氢化合物链,甚至生育酚衍生物都可以作为脂类的疏水部分。烃尾一般在8~18个碳单元之间,可具有不同的不饱和度,同时没有对称性的要求。而且在某些配方中加入不饱和脂肪酸作为脂尾可以提高输送效率,这可能是由于它们的转变温度较低以及它们对提高膜流动性的影响。而常用的连接基团包括醚和酯、磷酸盐或膦酸酯连接基团、甘油型基团或多肽。氨基甲酸酯和酰胺也经常被用作连接基团,因为它们都是化学稳定和可生物降解的。酯和醚是化学稳定的可选连接基团。连接基团是可调节的,因为它们足够稳定,具有较高的循环稳定性,但可以在目标位点迅速降解,以促进RNA有效载荷的释放。而最主要的头部基团则可以是季铵盐、胍基、咪唑鎓盐、吡啶盐等结构组成的阳离子磷脂,或是由伯胺和仲胺磷脂、叔胺基磷脂等组成的可电离磷脂,亦或是可由阳离子和阴离子基团共价连接组成的两性离子脂质。
随着研究的不断发展,越来越多的阳离子磷脂或可电离磷脂不断涌现,不断改善其在RNA递送上的各种问题,未来随着mRNA疫苗等相关技术的进一步普及,相信也会有更多的磷脂种类供研究者们选择。参考文献:
1. Felgner, P. L., et al. Lipofection: a Highly Efficient, Lipid-Mediated DNA-Transfection Procedure. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 7413−7417.
2. Yuebao Zhang., et al. Lipids and Lipid Derivatives for RNA Delivery. Chem. Rev. https://doi.org/10.1021/acs.chemrev.1c00244
3. Mahato, R. I. Water Insoluble and Soluble Lipids for Gene Delivery. Adv. Drug Delivery Rev. 2005, 57, 699−712.
纳米药物制备系统
应用范围:
了解更多信息请联系021-37827858或13818273779
点击以下链接,查看往期回顾
mRNA-LNP的结构到底是怎样的?
核酸脂质纳米粒(LNP)科普 —— 组成成分及作用
核酸脂质纳米粒科普——氮磷比计算
通过微流控技术GX、可放大的制备核酸脂质纳米粒
大小、结构不同的mRNA-LNP,细胞内的蛋白表达会不同吗?—— 粒径大小篇
mRNA体内递送载体有哪些?
NanoAssemblr制备的LNP实现对CRISPR-Cas9的GX递送
- 学会了平面设计软件,一个人为什么还是不能独立完成一个作品啊?
- 磷脂有什么功效?
- 一次性口罩独立与非独立区别
- 一次性口罩独立与非独立区别
- 数码相机的ccd平面和焦平面是同一个平面吗?
- 我是双层攻击吹膜机膜头Z底下会漏料是怎么回事
- 怎么揭开双层塑料薄膜
- 独立双继电器
- 独立双继电器
- 磷脂与磷有什么区别
- 陶瓷管弯曲怎么回事?
- 我用倒焰窑烧制的高龄土空心管是弯曲的。放进去时是直的,烧完之后都弯曲了。另外,在靠近喷火口的管子变形更严重。不知是摆放不规范还是烧制火候把握不当?请有实际经验的高手予以指... 我用倒焰窑烧制的高龄土空心管是弯曲的。放进去时是直的,烧完之后都弯曲了。另外,在靠近喷火口的管子变形更严重。不知是摆放不规范还是烧制火候把握不当?请有实际经验的高手予以指点。 展开
- 磷脂脂肪酸和游离脂肪酸的区别
- 在平面连杆机构的死点位置,从动件运动方向不能确定。对还错
- 的筷子会弯曲为什么把筷子,吸管放在水中会弯曲
1月突出贡献榜
推荐主页
最新话题
-
- #八一建军节——科技铸盾,仪器护航#
- 如何选择到合适的磷青铜绞线?磷青铜绞线的质量...如何选择到合适的磷青铜绞线?磷青铜绞线的质量解析和如何选择到合适的绞线?磷青铜绞线是一种特殊的铜合金导线,由铜、锡和磷等元素组成,具有很好的机械性能、电气性能和耐腐蚀性。磷青铜绞线基本定义与特性:磷青铜是铜与锡、磷的合金,质地坚硬,可制弹簧。典型成分为铜(90%)、锡(6-9%)及磷(0.03-0.6%)锡元素提升合金的强度和耐腐蚀性,磷则细化晶粒、增强耐磨性铸造性能。耐磨性:表面氧化层使其在特殊环境下耐腐蚀,使用寿命长导电性:保持铜很好导电性能的同时有化电子传输路径非铁磁性:不含铁元素,避免在强磁场环境中产生额外能量损耗弹性:受到外力作用时能迅速恢复原状
- 八一建军节 铁血铸军魂

泰初科技(天津)有限公司












参与评论
登录后参与评论