转化医学系列网络讲座 | 小动物多模态成像技术在药物研究中的应用
-
本期webinar邀请到的是军事科学院军事医学研究院辐射医学研究所抗辐射药物研究室,副研究员李琳娜博士。李博士毕业于军事医学科学院生化与分子生物学专业。2011-2013年在美国德克萨斯大学布朗医学ZX做博士后,主要从事激酶组学和肿瘤转移相关研究。目前的研究工作主要包括,肿瘤转移相关激酶的筛选鉴定、小动物多模态成像技术的研究和应用、药物的临床前筛选评价。ZD关注各类肿瘤模型、候选物成药性和临床前评价阶段面临的理论和技术问题。
讲座题目:
小动物多模态成像技术在药物研究中的应用
讲座时间:
2019年6月13日14:00-15:00
主讲人:
李琳娜 博士
讲座形式:
网络讲座,手机或PC即可参与
(会议链接和如下报名链接相同)
内容简介:
以1.1类创新药物研发为线索,结合16年肿瘤药理的研究经验,介绍分享新药研究申报过程中,荧光标记药物在药代研究中的特殊作用;
生物发光肿瘤模型在药效研究中的独特优势;
肿瘤EMT研究中新模型创造的新突破;
两药合用定量计算时生物发光肿瘤模型的特别贡献。
即刻报名:
扫描下方二维码,即刻报名吧!
更多转化医学系列网络讲座安排,具体时间以珀金埃尔默微信推送时间为准。敬请关注!
关于珀金埃尔默:
珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决Z棘手的科学和YL难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。
了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
全部评论(0条)
热门问答
- 转化医学系列网络讲座 | 小动物多模态成像技术在药物研究中的应用
本期webinar邀请到的是军事科学院军事医学研究院辐射医学研究所抗辐射药物研究室,副研究员李琳娜博士。李博士毕业于军事医学科学院生化与分子生物学专业。2011-2013年在美国德克萨斯大学布朗医学ZX做博士后,主要从事激酶组学和肿瘤转移相关研究。目前的研究工作主要包括,肿瘤转移相关激酶的筛选鉴定、小动物多模态成像技术的研究和应用、药物的临床前筛选评价。ZD关注各类肿瘤模型、候选物成药性和临床前评价阶段面临的理论和技术问题。
讲座题目:
小动物多模态成像技术在药物研究中的应用
讲座时间:
2019年6月13日14:00-15:00
主讲人:
李琳娜 博士
讲座形式:
网络讲座,手机或PC即可参与
(会议链接和如下报名链接相同)
内容简介:
以1.1类创新药物研发为线索,结合16年肿瘤药理的研究经验,介绍分享新药研究申报过程中,荧光标记药物在药代研究中的特殊作用;
生物发光肿瘤模型在药效研究中的独特优势;
肿瘤EMT研究中新模型创造的新突破;
两药合用定量计算时生物发光肿瘤模型的特别贡献。
即刻报名:
扫描下方二维码,即刻报名吧!
更多转化医学系列网络讲座安排,具体时间以珀金埃尔默微信推送时间为准。敬请关注!
关于珀金埃尔默:
珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决Z棘手的科学和YL难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。
了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
- 转化医学系列网络讲座预告|仿生纳米药物用于人脑胶质瘤的ZL
时间
2019年12月26日 下午14:00-15:00
题目
仿生纳米药物用于人脑胶质瘤的ZL
主讲人
刘艳杰 博士(河南大学)
讲座形式
网络讲座,手机或PC即可参与
(会议链接和如下报名链接相同)
内容简介
由于血脑屏障(blood brain barrier, BBB)的存在,使得人脑胶质瘤成为癌症ZL中Z棘手的肿瘤之一。BBB,其为脑部的自我平衡防御机制,它在保证神经系统免受外来物质侵扰的同时,也阻碍了ZL药物通过非入侵性给药进入脑内。因此,发掘研究能协助纳米药物突破BBB的药物或靶向分子是ZL脑部疾病的当务之急。
基于以上背景,讲者所在实验室设计了细胞膜伪装的肿瘤微环境响应的仿生纳米药物用于脑胶质瘤的靶向ZL。该智能仿生纳米药物合理解决了目前纳米药物面临的体内循环时间短、难以跨越BBB、被肿瘤细胞摄取量低和药物在病灶处释放缓慢等诸多关键问题,Z终可望成功实现人脑胶质瘤安全GX的ZL。
即刻报名扫描下方二维码,报名吧!
主讲人简介
刘艳杰 博士
生物医学工程专业在读博士,现在河南大学从事仿生纳米药物用于人脑胶质瘤的ZL的研究。在Advanced materials,Biomaterials等杂志上发表论文2篇,申请国内ZL2项。
- 文献速递ㅣ多模式活体成像系统在肝癌药物载体研究中的应用
肝癌是最常见的致命癌症之一。目前临床上主要采用手术切除癌变肝组织,同时以化疗、放疗等方式阻止正常肝细胞被感染恶化来治 疗肝癌;但是,化疗会滥杀滥伤各组织的正常细胞,并产生极大的副作用,而且在肝癌细胞发生转移或再生后也难以治愈。
因此,设计与制造出更好的用于肝癌治 疗的药物,是医药研究人员亟待解决的难题。如何提高药物疗 效,不仅可以从药物结构本身出发,而且可以从药物载体入手。选择新型药物载体或靶向基团,可以使有效药物分子直接作用于癌症患处,提高药物靶向性,减少药物对正常组织的伤害,减轻患者的疼痛。
近日,辽宁新药研发重 点实验室李丽教授课题组成功构建并制备了两种甘草次酸修饰的金属有机框架药物载体,并通过组织分布和活体成像实验,验证载体具有明显的肝靶向性。该成果已发表在纳米技术与精密工程领域国际权威期刊《Nanotechnology》。
1. 甘草次酸(GA)
甘草次酸(Glycyrrhetininc Acid,GA)是从中草药甘草中提取分离出来的具有抗 炎、抗病毒、抗溃疡等多种药理活性的甘草酸苷元。近期研究发现,在肝细胞膜上镶嵌着许多GA特异性受体,可与GA特异性结合,因此,GA作为药物靶向分子进行修饰的药物载体已经成为研究热点和一种新的靶向性治 疗肝癌的有效途径。
2. 金属有机框架(MOFs)
金属有机框架材料(Metal-organic Frameworks,MOFs),是一类通过组装无机金属离子与有机配体形成的具有多孔隙、高比表面积的新型材料。它的最 大的优点是具有良好的生物相容性,而且会在体内特定环境中自行分解,减少药物在体内的副作用,降低耐药性,提高药物治 LX率。
通过在MOFs表面修饰GA,可以实现MOFs的肝靶向性,并且MOFs的孔隙率高,具有超大比表面积,可以有效装载药物,提高载药能力。
两种MOFs载体:Uio-66-COOH-1,4-丁二胺-GA与UiO-66-NH2-GA。
3. 小鼠体内靶向性研究
DiR荧光染料,DiR@Uio-66-COOH-1,4-丁二胺-GA和DiR@Uio-66-NH2-GA 在小鼠体内不同时间段的荧光成像图
DiR荧光染料,DiR@Uio-66-COOH-1,4-丁二胺-GA和DiR@Uio-66-NH2-GA 在心、肝、脾、肺、肾的荧光成像图
关于多模式动物活体成像系统
AniView100多模式动物活体成像系统是广州博鹭腾生物科技有限公司全新推出的高灵敏度、多模式动物活体成像系统。其采用一级背部薄化、背部感光超低温CCD相机,具有极高的检测灵敏度。大功率全波长卤素灯激发光源配合精密复杂的全局光源和万向鹅颈管点状光源光路系统,再加上顶 级的光谱转换能力和多组滤光片组合,极大的提高了荧光信号的特异性,并大大缩短曝光时间。
- TOF-SIMS在光电器件研究中的应用系列之二
PART 01
引言有机发光二极管(Organic Light-Emitting Diode,OLED)是基于多层有机薄膜结构的电致发光的器件,用作平面显示器时具有轻薄、柔性、响应快、高对比度和低能耗等优点,有望成为新一代主流显示技术。然而,高效率和长寿命依然是阻碍OLED发展的重要因素,因为有机材料易降解和器件界面结构不稳定从而导致OLED器件失效。在此背景下,迫切需要了解器件的退化机制,从而在合理设计和改进材料组合以及器件结构的基础上,找到提高器件寿命的有效策略。
图1. 基于OLED柔性显示器件
PART 02
TOF-SIMS表面分析方法研究有机/无机混合OLED器件的界面效应是提高其性能和运行稳定性的关键步骤。在众多分析方法中,飞行时间二次离子质谱仪(Time of Flight-Secondary Ion Mass Spectrometer,TOF-SIMS)是表征有机层及其内部缺陷的有效分析工具。TOF-SIMS是由一次脉冲离子束轰击样品表面所产生的二次离子,经飞行时间质量分析器分析二次离子到达探测器的时间,从而得知样品表面成份的分析技术,具有以下检测优势:
(1)兼具高检测灵敏度(ppmm-ppb)、高质量分辨率(M/DM>16000)和高空间分辨率(<50nm);
(2)表面灵敏,可获取样品表面1-2个原子/分子层成分信息 (≤2nm);
(3)可分析H在内的所有元素,并且可以分析同位素;
(4)能够检测分子离子,从而获取有机材料的分子组成信息;
(5)适用材料范围广:导体、半导体及绝缘材料。
目前,TOF-SIMS作为一种重要的表面分析技术,可以用于样品的表面质谱谱图分析,深度分析,2D以及3D成像分析,所以被广泛应用于半导体器件、纳米器件、生物医药、量子材料以及能源电池材料等领域。
PART 03
应用简介基于Alq3(8-hydroxyquinoline, aluminum salt,8-羟基喹啉和铝,分子结构见图2)的OLED器件,因其宽视角、高亮度和低功耗的特性,成为下一代平板显示器最有潜力的备选之一。这类器件具有“三明治”结构,在两个电极之间夹有多个有机层。对于OLED器件的研究不仅专注于探索有机材料,还要进行失效分析来确定故障(如显示黑点)产生的原因。在这里,我们展示了TOF-SIMS 对Alq3有机层进行了全面表征。
图2. Alq3的分子结构式
图3和图4均为市售Alq3材料在正离子模式下的TOF-SIMS谱。TOF-SIMS结果表明,利用Au+和Ga+离子源均可检测到Alq3碎片的质量特征峰,但Au+离子源对这些碎片的灵敏度更高。比如,对比相同离子电流下的Au+和Ga+离子束对质量数为315的Alq2分子碎片的灵敏度,发现前者灵敏度提高了23倍。此外,只有Au+离子源才能检测到质量数超过1000的质量片段。这些质谱体现出使用Au+源分析Alq3这类分子量较大的材料的优势。
图3. 正离子模式下Alq3的TOF-SIMS谱。分析条件: 一次离子束Au+,22 keV;样品电流:0.07 pA;分析面积:300 μm2;数据采集时间10 min
4. 正离子模式下Alq3的TOF-SIMS谱。分析条件: 一次离子束Ga+,15 keV;样品电流:0.3 pA;分析面积:300 μm2;数据采集时间10 min
此外,Alq3薄膜必须在高真空条件下沉积才能保持其完整性。为研究大气对Alq3薄膜的影响,分别对暴露在空气前后的样品进行了TOF-SMIS表征,结果如图5所示。TOF-SMIS证明了暴露大气后Alq3薄膜发生了分解,并且随着暴露时间的增长,AlqO2质量片段的强度增加,表明水分和氧气会显著改变Alq3的组成。
图5. 负离子模式下Alq3在大气中暴露前后在的TOF-SIMS谱。分析条件: 一次离子束Ga+,15 kev;分析面积:300 μm2
总之,三重离子束聚焦质量分析器(Triple Ion Focusing Time-of-Flight,TRIFT)结合Au+离子源能显著提高仪器的灵敏度和降低本底,增强TOF-SMIS检测Alq3等高质量数(大分子)材料碎片的能力。
- TOF-SIMS在光电器件研究中的应用系列之三
一、引言
光伏发电新能源技术对于实现碳中和目标具有重要意义。近年来,基于有机-无机杂化钙钛矿的光电太阳能电池器件取得了飞速的发展,目前报道的最 高光电转化效率已接近26%。卤化物钙钛矿材料具有无限的组分调整空间,因此表现出优异的可调控的光电性质。然而,由于多组分的引入,钙钛矿材料生长过程中会出现多相竞争问题,导致薄膜初始组分分布不均一,这严重降低了器件效率和寿命。
图1. 钙钛矿晶体结构
二、TOF-SIMS应用成果由于目前用于高性能太阳能电池的混合卤化物过氧化物中的阳离子和阴离子的混合物经常发生元素和相分离,这限制了器件的寿命。对此,北京理工大学材料学院陈棋教授等人研究了二元(阳离子)系统钙钛矿薄膜(FA1-xCsxPbI3,FA:甲酰胺),揭示了钙钛矿薄膜材料初始均一性对薄膜及器件稳定性的影响。研究发现,薄膜在纳米尺度的不均一位点会在外界刺激下快速发展,导致更为严重的组分分布差异化(如图2所示),最 终形成热力学稳定的物相分离,并贯穿整个钙钛矿薄膜,造成材料退化和器件失活。该研究成果以题为“Initializing Film Homogeneity to Retard Phase Segregation for Stable Perovskite Solar Cells”发表在Science期刊。[1]
图2. 二元 FAC 钙钛矿的降解机制。(A-H)钙钛矿薄膜的组分初始分布和在外界刺激下的演变行为。(I-N)热力学驱动下,钙钛矿薄膜的物相分离现象的TOF-SIMS表征
TOF-SIMS作为重要的表面分析方法,具有高检测灵敏度(ppm-ppb)、高质量分辨率(M/DM>16000)和高空间分辨率(<50 nm)能力。在本研究中利用TOF-SIMS对发生老化后(晶体相变)的钙钛矿薄膜进行表征,从2D元素分布图中观察到薄膜中的阳离子Cs与FA同时发生了分离(如图2所示),并形成尺寸为几到几十微米的相,将二者的元素分布图像叠加后(见图2 K),观察到分离后的Cs/FA偏析区域在空间上形成互补,证明了每个区域的组成与其晶体结构相关联。此外,TOF-SIMS 3D影像(图2L至2N)表明,垂直方向分布相对均匀,阳离子在不同深度上的聚集方式与表面类似。TOF-SIMS结合XRD和PL结果证明了由于阳离子的局部聚集,从而导致了相分离。
此外,从降解初期的FACs钙钛矿薄膜的TOF-SIMS图像中明显能观察到无色区域(见图3A)Cs的信号更强,表明了区域1(与图2A和E中标注位置一一对应)中的Cs+阳离子有迁移到区域2和3,进一步表明了该膜的降解是由Cs偏析和随后的相变所引起的。
图3. 二元阳离子FACs钙钛矿膜在降解初期的TOF-SIMS图
该研究采用Schelling的偏析模型,并结合TOF-SIMS及其他实验观察数据结果表明:
(1)钙钛矿薄膜初始均一性对薄膜的老化行为有显著影响:薄膜在纳米尺度的不均一位点会在外界刺激下快速发展,导致更为严重的组分分布差异化,最 终形成热力学稳定的物相分离,并贯穿整个钙钛矿薄膜,造成材料退化和器件失活。
(2)薄膜均一性的提升将显著减缓其老化速率:通过在钙钛矿前驱体溶液中引入弱配位的添加剂硒酚,有效调控了溶液胶体环境,提升了薄膜均一性。实验结果表明,均一性提升的薄膜在热、光老化条件下,表现了较好的稳定性,在实验周期内未出现显著的物相分离。同时,经过进一步的器件优化,所制备的太阳能电池器件展现了良好的光电性能,在1 cm²器件上,获得了23.7%的认证效率。在不同温度条件下,器件在LED光源持续照射下,也表现了良好的工作稳定性。
三、TOF-SIMS表面分析方法飞行时间二次离子质谱仪(Time of Flight-Secondary Ion Mass Spectrometer,TOF-SIMS)是由一次脉冲离子束轰击样品表面所产生的二次离子,经飞行时间质量分析器分析二次离子到达探测器的时间,从而得知样品表面成份的分析技术,具有以下检测优势:
(1)兼具高检测灵敏度(ppm-ppb)、高质量分辨率(M/DM>16000)和高空间分辨率(<50nm);
(2)表面灵敏,可获取样品表面1-2个原子/分子层成分信息 (≤2nm);
(3)可分析H在内的所有元素,并且可以分析同位素;
(4)能够检测分子离子,从而获取有机材料的分子组成信息;
(5)适用材料范围广:导体、半导体及绝缘材料。
图4. TOF-SIMS可以提供的数据类型
目前,TOF-SIMS作为一种重要的表面分析技术,可以用于样品的表面质谱谱图分析,深度分析,2D以及3D成像分析,所以被广泛应用于半导体器件、纳米器件、生物医药、量子材料以及能源电池材料等领域。
参考文献
[1] Bai et al. Initializing film homogeneity to retard phase segregation for stable perovskite solar cells, Science (2022). https://doi.org/10.1126/science.abn3148
- 火热似6月——转化医学系列活动总结
炎热的夏日已经侵略如火般全面进入我们的生活,珀金埃尔默的转化医学系列活动也正在如火如荼地进行着。以下是我们6月的足迹:
6月22日
PerkinElmer转化医学INTour全国系列研讨会 – 南宁站
#92
6月26日
PerkinElmer转化医学INTour全国系列研讨会 – 大连站
#93
6月27日
PerkinElmer转化医学INTour全国系列研讨会 – 福州站
#94
6月27日
PerkinElmer转化医学INTour全国系列研讨会 – 重庆站
#95
药物研发是药物ZL的起点,同时也是生命科学研究转化的关键点。珀金埃尔默公司在杂交瘤筛选、表型筛选、小动物活体成像及组织水平生物标记物研究领域有一系列先进的技术和研究方案,同时我们也一直在思考如何让更多的人更早更好地了解和使用上这些技术。
我们的转化医学系列活动围绕创新药物的临床前/临床功能验证、安全评价及治LX果,并从分子机制、细胞信号通路、组织微环境及整体动物水平多个层面介绍药物研发Z新技术和进展,并结合研究实例,以期将基础科研成果快速、GX的向临床转化提供了强大的技术支持手段。
6月22日 PerkinElmer转化医学INTour全国系列研讨会 – 南宁站 #92
6月26日 PerkinElmer转化医学INTour全国系列研讨会 – 大连站 #93
6月27日 PerkinElmer转化医学INTour全国系列研讨会 – 福州站 #94
6月27日 PerkinElmer转化医学INTour全国系列研讨会 – 重庆站 #95
- DSC-Raman联用技术在研究高分子结晶度中的应用
差示扫描量热仪(DSC)和拉曼光谱仪均被广泛应用于结晶度的研究,但监测的原理截然不同。DSC不仅可以精确确定样品结晶度,而且还可以通过测定相关焓变信息得到结晶动力学参数。凭借自身极其优异地控温能力——加热和冷却速度可以高达750°C/min可控,PerkinElmer®DSC8000或8500型DSC经常用于结晶度研究。ZL的双炉体设计,赋予炉温瞬间稳定以及精确控制在某一真实温度的能力,等温研究Z好是在这个模式下进行。结晶物的拉曼光谱和非结晶物一般不同,前者的峰宽较窄。拉曼光谱仪还可用于监控非常慢速的变化过程,从而提供额外的样品信息,并且也可以准确判定混晶发生的位置。PerkinElmer公司研发的RamanStation™400和RamanFlex™lines允许实时调节激光脉冲周期,因此可以轻松调节拉曼光谱采集信号速率和DSC扫描速率的Z佳匹配值。同时测量消除了材料可能受试样热历史影响而带来的不确定性。
下文针对半结晶性聚氧化乙烯的DSC-Raman检测可以充分说明两种技术的互补性。上述材料已被广泛运用于YL、生活以及工作的方方面面,例如牙膏。试样从10°C加热到75°C,经历了熔融过程,然后冷却到10°C,再进行重复扫描。diyi周循环中样品的熔融峰温位于70°C,而在第二次升温扫描中则出现在66.7°C。第二周升温测得的熔融热值也降低了(图1)。这暗示了diyi次的熔融和结晶过程使得材料的无定型区增加。
图1.聚氧化乙烯(PEO)的DSC扫描。diyi次和第二次循环被标注清楚
在DSC运行时拉曼光谱每间隔5秒接受一次。diyi次加热/冷却循环之后,光谱中显示大量的无定型组分特征(图2)。通过差减可以diyi次循环扫描前后的光谱差异。虽然存在噪音,但它与完全熔融时的光谱图非常相似。因此拉曼光谱可以直接确认来自于DSC数据的推论,那就是diyi次加热/冷却循环提高了试样的无定型含量。从这些数据(图3)可以得到结晶组分的光谱和非晶组分的光谱。
图2.PEO的DSC扫描和光谱
图3.PEO结晶和非晶的拉曼光谱
常用这两种技术来研究聚对苯二甲酸乙二醇酯(PET)。试样从熔融温度快速冷却至室温后检测到存在明显的无定型结构。热流曲线显示一个玻璃化转变温度(Tg)大约在70°C,然后出现冷结晶,在270°C发生晶区熔融(图4)。拉曼光谱的变化很小,但可以紧跟着进行主成分分析(PCA)。分析1727cm-1C=O拉曼骨架,得到两个主要的组分:PC1是diyi次求导曲线,对应于骨架的移动,PC2是二次求导曲线,表示峰宽的变化。很明显,对于峰宽变化的温度曲线与试样的结晶和熔融的相对应。然而,峰移动的温度曲线并不与DSC热流曲线的事件相对应,但反映了随着温度的提高向低频连续的移动。
等温结晶可以真正地被DSC或带有可以理想的快速处理的DSC的拉曼光谱仪监测,而拉曼甚至可以被应用于慢速结晶研究。在研究两种吹塑成型的聚乙烯薄膜中可以看到两种技术数据的相关性,其中的一个材料不好。以500°C/min的速度快速从熔融状态冷却,测量发现试样在121°C结晶。这个实验需要使用HyperDSC®-capable设备,像DSC8500设备一样可以快速冷却并且仍然可以精确地、稳定地回到等温温度。一个稳定的瞬态之后,DSC数据(图5)显示问题材料比合格材料结晶更快,熔融焓值更高。拉曼数据(图5)显示Z初试样加热和冷却以及等温过程。这种情况下来自PCA的分数可以直接与结晶度相关。这里发现问题材料比合格材料结晶更快,另外Z终结晶度也比合格材料高。两组数据显示Z终的结晶度,问题材料高于合格材料50%。两种情况下材料Z终的结晶度远低于开始时的结晶度。
图4PET的DSC和拉曼数据
图5a.HDPE等温结晶的DSC曲线图
图5b.HDPE熔融和等温结晶的拉曼光谱
DSC-Raman光谱仪赋予我们精确研究高聚物的能力,可以GX再现样品在各种控温条件下的结晶行为,同时与DSC能量变化相关的结构信息也能通过拉曼光谱体现。这种途径使得两种方法的相关性精确,有助于对结晶行为更深层次的理解。
- 应用案例 PCR技术医学研究领域应用分享
PCR(polymerase chain reaction,PCR)即聚合酶链反应,是利用一段DNA为模板,在DNA聚合酶和核苷酸底物共同参与下,将该段DNA扩增至足够数量,以便进行结构和功能分析。PCR应用场景广泛,不仅在基础研究方面,还包括医学诊断、法医学和农业科学等各大领域。
近期多篇医学研究多篇文献中均应用到PCR技术及PCR仪产品,小编为大家做一下简要分享。
近期南方医科大学临床医学博士生导师、主任医师王雅棣课题组在医学期刊《Oncology Research and Treatment》上发表题为Preliminary Clinical Validation of a Filtration-Based CTC Assay for Tumor Burden and HER2 Status Monitoring in Metastatic Breast Cancer的文章,探索研究基于过滤的CTC测定转移性乳腺癌肿瘤负荷和HER2状态监测的初步临床验证情况。
背景介绍:
循环肿瘤细胞(CTC,CirculatingTumorCell)是存在于外周血中的各类肿瘤细胞的统称,因自发或诊疗操作从实体肿瘤病灶(原发灶、转移灶)脱落,大部分CTC在进入外周血后发生凋亡或被吞噬,少数能够逃逸并锚着发展成为转移灶,增加恶性肿瘤患者死亡风险。CTC检测通过捕捉检测外周血中痕量存在的CTC,监测CTC类型和数量变化的趋势,以便实时监测肿瘤动态、评估治疗效果,实现实时个体治疗。循环肿瘤细胞 (CTC) 承载着从基因组改变到蛋白质组构成的多维肿瘤相关信息,是一种很有前途的液体活检材料。 CTC 的临床有效性在转移性乳腺癌 (MBC) 中得到了最广泛的研究。 CELLSEARCH®检测是目前使用最广泛的方法,研究者们同时也在寻求替代策略。一种基于过滤的微流体装置已被用于富集 CTC,但其临床相关性仍然未知。
方法:在这项初步研究中,作者研究团队招募了 47 名 MBC 患者,并评估了上述 CTC 检测在肿瘤负荷监测和人表皮生长因子受体 2 (HER2) 状态测定方面的性能。结果:在基线时,51.1% 的患者 (24/47) 为 CTC 阳性。在伴随着较差的放射学反应评估的样本中,CTC 计数和阳性率也显著升高。连续抽血表明,与血清标志物癌胚抗原和癌抗原 15-3 相比,CTC 计数能够更准确地监测肿瘤负荷。此外,与之前的报告相比,CTC-HER2 状态与肿瘤-HER2 状态中度一致。选定样本中的 HER2 拷贝数测量进一步支持了 CTC-HER2 状态评估。
结论:这项研究的初步结果表明,CDC 检测在几个方面都有希望,包括敏感的 CTC 检测、准确的疾病状态反映和 HER2 状态确定。目前需要更多的研究来验证这些发现,并进一步表征CTC测定的价值。
在实验验证中,柏恒科技RePure-A 梯度PCR仪发挥了一定作用,助力作者实验研究进行。
而在另一篇发表在《Frontiers in Molecular Biosciences》期刊上的论文,柏恒科技PCR仪也发挥了不小作用。哈尔滨医科大学附属二院肾内科主任医师、博士生及硕士生导师李冰课题组发表的题为Bioinformatic Analysis Combined With Experimental Validation Reveals Novel Hub Genes and Pathways Associated With Focal Segmental Glomerulosclerosis的文章,作者研究团队利用生物信息学分析与实验验证相结合,揭示了与局灶性节段性肾小球硬化相关的新型Hub基因和通路。
背景介绍:局灶节段性肾小球硬化症 (focal segmental glomerulosclerosis, FSGS)是一种临床病理综合征,临床表现为大量蛋白尿或肾病综合征,病理以局灶节段分布的肾小球硬化病变及足细胞变性所致足突融合或消失为特征,多数表现为激素治疗抵抗,并进行性发展至终末期肾病 (ESRD)。本研究旨在探索与FSGS相关的枢纽基因和通路,以确定潜在的诊断和治疗靶点。
方法:作者团队从 Gene Expression Omnibus (GEO) 数据库下载了微阵列数据集 GSE121233 和 GSE129973。数据集包括 25 个 FSGS 样本和 25 个正常样本。使用R包“limma”识别差异表达基因(DEG)。Gene Ontology (GO)功能和(KEGG)通路富集分析使用数据库进行注释,可视化和集成发现 (DAVID),用于识别 DEG 的通路和功能注释。蛋白质-蛋白质相互作用(PPI)是基于检索相互作用基因(STRING)数据库的搜索工具构建的,并使用 Cytoscape 软件进行可视化。然后使用 Cytoscape 的 cytoHubba 插件评估 DEG 的中心基因。使用 FSGS 大鼠模型通过定量实时聚合酶链反应 (qRT-PCR) 验证中shu基因的表达,并进行接受者操作特征 (ROC) 曲线分析以验证这些中(shu)枢基因的准确性。
结果:在两个 GSE 数据集(GSE121233 和 GSE129973)中共识别出 45 个 DEG,包括 18 个上调和 27 个下调的 DEG。其中,选择了5个具有高度连通性的枢纽基因。在 PPI 网络中,前 5 个中(shu)枢基因中,FN1 上调,而 ALB、EGF、TTR 和 KNG1 下调。 FSGS大鼠的qRT-PCR分析证实FN1的表达上调,EGF和TTR的表达下调。 ROC 分析表明 FN1、EGF 和 TTR 对 FSGS 显示出相当大的诊断效率。
结论:通过生物信息学分析结合实验验证,鉴定出三个新的 FSGS 特异性基因,这可能会促进对 FSGS 的分子基础的理解,并为临床管理提供潜在的治疗靶点。
实验验证中,实验团队应用了柏恒科技荧光定量PCR仪进行样品测定并分析。
除了以上列出的几篇文献,柏恒科技PCR仪在生物科研、动物疫病等方面均有广泛应用,下期我们再继续分享。
文献中PCR仪产品简介
RePure系列智能二维梯度PCR仪
本系列PCR仪具有二维梯度摸索功能,多种梯度摸索模式;
自适应压杆式热盖,合盖紧盖一步到位;
前进后出式风道,机器可并排放置,节约实验空间;
Q3200系列荧光定量PCR仪
本系列荧光PCR仪采用四通道双16孔模块设计,可实现一机多用;
最大升降温速率8℃/s,大大节约实验时间;
体积小,重量轻,方便携带;
更多PCR仪技术应用,欢迎关注柏恒科技,我们提供各类梯度PCR仪、荧光PCR仪等,并为客户提供生物学相关检测解决方案。
- DNA测序技术在生物学,医学方面的应用
- 自动成像技术在陶瓷相关领域的应用
随着人们对陶瓷材料性能要求的不断提升,大家对于陶瓷粉料的研磨和加工要求也是越来越高,尤其是对于一些超细陶瓷粉料,要想实现对超细粉料的控制,除了研磨设备本身的设计,研磨介质的质量也是至关重要。比如现在市面陶瓷研磨常用的镐珠体系,除了研磨球本身的化学成分、密度、抗压强度、弹性模量、硬度以外,球体本身的大小和圆度也是非常重要的参数。虽然图像技术是测试研磨球大小和圆度的一个有力武器,但由于镐珠一般数量巨大,如何获得具有代表性和统计性的结果,就成为镐珠质量评测的一个挑战。虽然电镜或者显微镜能够获得高质量的图像结果,但由于一次成像数目非常有限,在数据代表性和定量分析方面存在风险,因此动态图像技术就成为了一个很好的选择。
自由落体颗粒采样技术
鞘流采样技术
动态图像一般有两种进样方式,即自由落体进样和鞘流进样,自由落体进样利用颗粒自身重力通过检测区域,设计简单,测试速度较快,但一般主要面对颗粒较大、分散性较好的粉料。而鞘流进样,则采用特殊的设计,形成鞘流以便颗粒排着队逐个通过检测区域,其具有准确度高、对小颗粒效果好等优点,但不足之处就是对于颗粒较大的样品或者密度较大的,其容易发生堵塞或者输送问题。考虑到镐珠本身颗粒密度较高,同时镐珠表面相对光滑,颗粒之间粘附性较低,因此自由落体的进样方式更加合理方便。以下就是某种较细的镐珠采用自动成像技术获得的结果,可以看到,其不但可以给出粒径或者圆度的平均结果,更重要的是其可以给出相应的分布数据,从而帮助生产者更细致地控制镐珠工艺。
(来源:丹东百特仪器有限公司)
1月突出贡献榜
推荐主页
最新话题
-
- #八一建军节——科技铸盾,仪器护航#
- 如何选择到合适的磷青铜绞线?磷青铜绞线的质量...如何选择到合适的磷青铜绞线?磷青铜绞线的质量解析和如何选择到合适的绞线?磷青铜绞线是一种特殊的铜合金导线,由铜、锡和磷等元素组成,具有很好的机械性能、电气性能和耐腐蚀性。磷青铜绞线基本定义与特性:磷青铜是铜与锡、磷的合金,质地坚硬,可制弹簧。典型成分为铜(90%)、锡(6-9%)及磷(0.03-0.6%)锡元素提升合金的强度和耐腐蚀性,磷则细化晶粒、增强耐磨性铸造性能。耐磨性:表面氧化层使其在特殊环境下耐腐蚀,使用寿命长导电性:保持铜很好导电性能的同时有化电子传输路径非铁磁性:不含铁元素,避免在强磁场环境中产生额外能量损耗弹性:受到外力作用时能迅速恢复原状
- 八一建军节 铁血铸军魂

珀金埃尔默












参与评论
登录后参与评论