仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

低场核磁共振技术研究国产cmp研磨液

苏州纽迈分析仪器 2022-12-21 15:24:34 171  浏览
  • 低场核磁共振技术研究国产cmp研磨液

    什么是cmp研磨液?

    CMP 全称为 Chemical Mechanical Polishing,即化学机械抛光。该技术是半导体晶圆制造的比备流程之一,对高精度、高性能晶圆制造至关重要。抛光液的主要成分包括研磨颗粒、PH值调节剂、氧化剂、分散剂等。从成分中我们就大概知道了抛光液是一种对分散要求很高的纳米材料悬浮液,所以研磨过程中对颗粒的尺寸变化以及颗粒在悬浮液中的分散性都有着极其严苛的要求。

    低场核磁共振技术研究国产cmp研磨液

    低场核磁弛豫技术以水分子(溶剂)为探针,可以实时检测悬浮液体系中水分子的状态变化。

    低场核磁弛豫技术可以区分出纳米颗粒与溶剂的固液界面间那一层薄薄的表面溶剂分子,当颗粒尺寸或颗粒分散性发生变化时,颗粒表面的溶剂分子也会发生相应的变化。低场核磁弛豫技术可以灵敏的检测到这这种变化状态和变化过程,从而可以快速地评价例如抛光液以及相关悬浮液样品的分散性和悬浮液中颗粒尺寸的变化过程。

    低场核磁弛豫技术与传统氮气吸附法有哪些差异?

    在低场核磁弛豫技术还未应用于抛光液领域之前,蕞常用的方法是用氮气吸附法来表征颗粒的比表面积。但是在实际的研发与生产过程中,研究人员发现就算氮气吸附法表征的研磨颗粒的比表面积非常稳定,抛光过程中还是会发生抛光液性能不稳定的情况。而这种情况很可能是研磨颗粒在溶剂体系中发生了团聚,进而发生了尺寸上的变化而导致蕞终研磨性能的问题。低场核磁弛豫技术可直接用于研磨液原液的分散性检测,可以快速评价悬浮液体系的分散性而被广泛应用于CMP抛光液的研发与生产控制中。

    低场核磁弛豫技术还能用于哪些领域?

    低场核磁弛豫技术除了用于半导体CMP抛光液,还可以用于国家正大力扶持的新能源电池浆料,光伏产业的导电银浆,石墨烯浆料,电子浆料等新材料领域。这些方向都非常适合采用低场核磁弛豫技术来研究其原液的分散性、稳定性。

参与评论

全部评论(0条)

热门问答

低场核磁共振技术研究国产cmp研磨液

低场核磁共振技术研究国产cmp研磨液

什么是cmp研磨液?

CMP 全称为 Chemical Mechanical Polishing,即化学机械抛光。该技术是半导体晶圆制造的比备流程之一,对高精度、高性能晶圆制造至关重要。抛光液的主要成分包括研磨颗粒、PH值调节剂、氧化剂、分散剂等。从成分中我们就大概知道了抛光液是一种对分散要求很高的纳米材料悬浮液,所以研磨过程中对颗粒的尺寸变化以及颗粒在悬浮液中的分散性都有着极其严苛的要求。

低场核磁共振技术研究国产cmp研磨液

低场核磁弛豫技术以水分子(溶剂)为探针,可以实时检测悬浮液体系中水分子的状态变化。

低场核磁弛豫技术可以区分出纳米颗粒与溶剂的固液界面间那一层薄薄的表面溶剂分子,当颗粒尺寸或颗粒分散性发生变化时,颗粒表面的溶剂分子也会发生相应的变化。低场核磁弛豫技术可以灵敏的检测到这这种变化状态和变化过程,从而可以快速地评价例如抛光液以及相关悬浮液样品的分散性和悬浮液中颗粒尺寸的变化过程。

低场核磁弛豫技术与传统氮气吸附法有哪些差异?

在低场核磁弛豫技术还未应用于抛光液领域之前,蕞常用的方法是用氮气吸附法来表征颗粒的比表面积。但是在实际的研发与生产过程中,研究人员发现就算氮气吸附法表征的研磨颗粒的比表面积非常稳定,抛光过程中还是会发生抛光液性能不稳定的情况。而这种情况很可能是研磨颗粒在溶剂体系中发生了团聚,进而发生了尺寸上的变化而导致蕞终研磨性能的问题。低场核磁弛豫技术可直接用于研磨液原液的分散性检测,可以快速评价悬浮液体系的分散性而被广泛应用于CMP抛光液的研发与生产控制中。

低场核磁弛豫技术还能用于哪些领域?

低场核磁弛豫技术除了用于半导体CMP抛光液,还可以用于国家正大力扶持的新能源电池浆料,光伏产业的导电银浆,石墨烯浆料,电子浆料等新材料领域。这些方向都非常适合采用低场核磁弛豫技术来研究其原液的分散性、稳定性。

2022-12-21 15:24:34 171 0
cmp研磨液厂家使用低场核磁技术研究CMP抛光液的原位分散性

cmp研磨液厂家使用低场核磁技术研究CMP抛光液的原位分散性

CMP 全称为 Chemical Mechanical Polishing,即化学机械抛光。该技术是半导体晶圆制造的比备流程之一,对高精度、高性能晶圆制造至关重要。抛光液的主要成分包括研磨颗粒、PH值调节剂、氧化剂、分散剂等。从成分中我们就大概知道了抛光液是一种对分散要求很高的纳米材料悬浮液,所以研磨过程中对颗粒的尺寸变化以及颗粒在悬浮液中的分散性都有着极其严苛的要求。

低场核磁弛豫技术用于悬浮液中颗粒尺寸变化和颗粒分散性检测

低场核磁弛豫技术以水分子(溶剂)为探针,可以实时检测悬浮液体系中水分子的状态变化。

低场核磁弛豫技术可以区分出纳米颗粒与溶剂的固液界面间那一层薄薄的表面溶剂分子,当颗粒尺寸或颗粒分散性发生变化时,颗粒表面的溶剂分子也会发生相应的变化。低场核磁弛豫技术可以灵敏的检测到这这种变化状态和变化过程,从而可以快速地评价例如抛光液以及相关悬浮液样品的分散性和悬浮液中颗粒尺寸的变化过程。

低场核磁弛豫技术与传统氮气吸附法有哪些差异?

在低场核磁弛豫技术还未应用于抛光液领域之前,蕞常用的方法是用氮气吸附法来表征颗粒的比表面积。但是在实际的研发与生产过程中,研究人员发现就算氮气吸附法表征的研磨颗粒的比表面积非常稳定,抛光过程中还是会发生抛光液性能不稳定的情况。而这种情况很可能是研磨颗粒在溶剂体系中发生了团聚,进而发生了尺寸上的变化而导致蕞终研磨性能的问题。低场核磁弛豫技术可直接用于研磨液原液的分散性检测,可以快速评价悬浮液体系的分散性而被广泛应用于CMP抛光液的研发与生产控制中。

低场核磁弛豫技术还能用于哪些领域?

低场核磁弛豫技术除了用于半导体CMP抛光液,还可以用于国家正大力扶持的新能源电池浆料,光伏产业的导电银浆,石墨烯浆料,电子浆料等新材料领域。这些方向都非常适合采用低场核磁弛豫技术来研究其原液的分散性、稳定性。

低场核磁弛豫分析仪:

2022-07-27 09:48:22 262 0
lf-nmr/mri 低场核磁共振

低场核磁共振(Low-Field Nuclear Magnetic Resonance,LF-NMR)或低场核磁共振成像(Low-Field MRI)是指在相对较低的磁场强度下进行的核磁共振技术或成像技术。相对于传统的高场核磁共振技术(如1.5T或3T),低场核磁共振通常指磁场强度在0.1T到1.5T范围内的系统。


lf-nmr/mri低场核磁共振技术具有一些特殊的应用和优势:

1.低成本:相对于高场核磁共振系统,低场核磁共振系统的建设和运行成本较低,使得该技术在一些预算有限的研究或应用领域更具可行性。

2.便携性:低场核磁共振系统可以设计为便携式设备,易于移动和部署。这使得它在野外、临床诊断或偏远地区等场景下的应用具有优势。

3.特定应用:lf-nmr/mri低场核磁共振技术在某些特定应用中具有优势,例如食品质量检测、油水分离、岩心分析等。由于不同核磁共振参数(如T1、T2等)在不同场强下的变化特点,低场核磁共振可以提供特殊的信息。

低场核磁共振成像:lf-nmr/mri低场核磁共振成像通常用于医学和生物学领域,如关节成像、脑部成像等。虽然低场成像分辨率较低,但它具有较短的扫描时间和较低的磁场要求,对某些临床情况或特定应用具有一定的优势。


需要注意的是,低场核磁共振系统的性能和成像质量相对较差,分辨率较低,对于某些细节的观察可能不够清晰。因此,在选择核磁共振系统时,需要综合考虑具体应用需求、成本和设备性能等因素。


lf-nmr/mri低场核磁共振主要可分为磁体、射频、谱仪和温控四个部分;


2023-07-10 13:03:06 337 0
低场核磁技术研究硅胶老化

低场核磁技术研究硅胶老化

由于硅胶制品的使用越来越频繁,硅胶产品在多数人的印象中是性能优异且各方面使用体验都很好,许多老客户也慢慢感觉到硅胶制品老化的现象,硅胶制品为什么会出现老化现象。

硅胶产品为什么会出现老化?

硅橡胶树脂的粘合性比许多橡胶都要高,但硅胶同其它橡胶一样,也会发生老化现象,由于内部分子链断裂,使硅胶的性能发生了很大的变化。对于橡塑制品来说,硅胶产品危害蕞大的就是紫外线,紫外线会直接导致橡胶分子链的断裂,这是因为硅胶制品可吸收光能使橡胶内产生自由分子。

硅胶产品老化的原因主要有以下三点:

1. 经常有高温或高温环境。高温度会加速硅胶材料的氧化环境,从而导致老化。

2. 化学因素。归根结底,硅胶材料是一种化学物质,有些化学因素会加速其老化。

3. 臭氧。硅材料很怕臭氧,会使硅胶制品的性能迅速下降,老化得很快。

硅胶老化的试验方法:

硅胶老化是硅胶性能受损的主要原因之一。由于产品的配方和使用条件各异,老化历程快慢不一,所以,需要通过检测技术对硅胶样品进行测试,以评定硅胶老化的程度及其对性能的影响。低场核磁技术可用于硅胶老化检测。

低场核磁技术研究硅胶老化基本原理:

低场核磁共振技术是通过测定恒定磁场强度下样品中1H的弛豫时间,从而获得分子结构动态信息的方法。其基本原理是通过施加射频脉冲给予处于恒定磁场中的样品,使氢质子发生共振,质子所吸收的射频波能量以非辐射的方式释放后返回到基态,此过程被称为弛豫过程。弛豫又可分为横向弛豫和纵向弛豫,样品内部氢质子所处物理化学环境及存在状态决定了弛豫时间的长短。从物理机制上,核磁弛豫过程是自旋氢原子核与环境之间通过相互作用进行能量交换的过程。核磁共振是自旋不为零的原子在静磁场中被磁化后,与特定射频场产生共振吸收现象,吸收射频脉冲能量后自旋核与周围物质相互作用,释放能量,并恢复初始状态过程。

硅胶老化是交联体系发生变化的综合过程,核磁共振的弛豫机制对这种变化具有高敏感性,其主要表现为横向弛豫时间T2随反应时间延长的规律性变化。因此通过研究老化过程中硅胶样品的弛豫时间变化规律及其与老化性能的关系,就可以间接评估硅胶老化的特性。

f

2022-10-15 17:15:47 201 0
低场核磁技术研究纳米银颗粒团聚

低场核磁技术研究纳米银颗粒团聚

颗粒团聚可分为三种状态:

凝聚体:指以面相接的原级粒子,其表面积比其单个粒子组成之和小得多,这种状态再分散十分困难。

附聚体:指以点、角相接的原级粒子团族或小颗粒在大颗粒上的附着,其总表面积比凝聚体大,但小于单个粒子组成之和,再分散比较容易。凝聚体和附聚体也称二次粒子。

絮凝:指由于体系表面积的增加、表面能增大,为了降低表面能而生成的更加松散的结构。一般是由于大分子表面活性剂或水溶性高分子的架桥作用,把颗粒串联成结构松散似棉絮的团状物。在这种结构中,离子间的距离比凝聚体或附聚体大得多。


颗粒在液体中的团聚与分散

颗粒表面湿润性对粉体的分散具有重要意义,是粉体分散、固液分离、表面改性和造粒等工艺的理论基础。固体颗粒被液体润湿的过程主要基于颗粒表面的润湿性。固体表面的湿润性由其化学组成和微观结构决定。固体表面自由能越大,越容易被液体湿润;反之亦然。因而,寻求和制备高表面自由能的固体表面成为制备超亲水表面和超疏水表面的前提条件。

低场核磁技术研究纳米银颗粒团聚的基本原理:

对于润湿的颗粒体系,颗粒表面会附着一层液相分子,这些液相分子因无机相表面的吸附作用而运动受限。但未与颗粒相接触的液相分子运动是自由的,液相分子的驰豫时间(relaxation time)与它所处的运动状态密切相关,自由状态的液相分子的核磁驰豫时间要比束缚状态的液相分子的驰豫时间长得多,颗粒分散性更好的体系吸附溶剂量相对更多,弛豫时间也就更短。因此,可以利用低场核磁共振技术来测量悬浮液体系的驰豫时间,并计算颗粒的湿润比表面积(可利用的吸附表面积),进而用来研究颗粒的团聚状态、分散性稳定性、亲和性以及润湿性等问题。

2022-08-23 10:15:29 140 0
低场核磁技术研究锂电颗粒团聚

低场核磁技术研究锂电颗粒团聚

颗粒团聚可分为三种状态:

凝聚体:指以面相接的原级粒子,其表面积比其单个粒子组成之和小得多,这种状态再分散十分困难。

附聚体:指以点、角相接的原级粒子团族或小颗粒在大颗粒上的附着,其总表面积比凝聚体大,但小于单个粒子组成之和,再分散比较容易。凝聚体和附聚体也称二次粒子。

絮凝:指由于体系表面积的增加、表面能增大,为了降低表面能而生成的更加松散的结构。一般是由于大分子表面活性剂或水溶性高分子的架桥作用,把颗粒串联成结构松散似棉絮的团状物。在这种结构中,离子间的距离比凝聚体或附聚体大得多。

颗粒在液体中的团聚与分散

颗粒表面湿润性对粉体的分散具有重要意义,是粉体分散、固液分离、表面改性和造粒等工艺的理论基础。固体颗粒被液体润湿的过程主要基于颗粒表面的润湿性。固体表面的湿润性由其化学组成和微观结构决定。固体表面自由能越大,越容易被液体湿润;反之亦然。因而,寻求和制备高表面自由能的固体表面成为制备超亲水表面和超疏水表面的前提条件。

低场核磁技术研究锂电颗粒团聚的基本原理:

对于润湿的颗粒体系,颗粒表面会附着一层液相分子,这些液相分子因无机相表面的吸附作用而运动受限。但未与颗粒相接触的液相分子运动是自由的,液相分子的驰豫时间(relaxation time)与它所处的运动状态密切相关,自由状态的液相分子的核磁驰豫时间要比束缚状态的液相分子的驰豫时间长得多,颗粒分散性更好的体系吸附溶剂量相对更多,弛豫时间也就更短。因此,可以利用低场核磁共振技术来测量悬浮液体系的驰豫时间,并计算颗粒的湿润比表面积(可利用的吸附表面积),进而用来研究颗粒的团聚状态、分散性稳定性、亲和性以及润湿性等问题。


2022-09-04 20:07:28 157 0
低场核磁技术研究湿颗粒团聚

低场核磁技术研究湿颗粒团聚

颗粒的团聚根据其作用机理可分为三种状态:

凝聚体:指以面相接的原级粒子,其表面积比其单个粒子组成之和小得多,这种状态再分散十分困难。

附聚体:指以点、角相接的原级粒子团族或小颗粒在大颗粒上的附着,其总表面积比凝聚体大,但小于单个粒子组成之和,再分散比较容易。凝聚体和附聚体也称二次粒子。

絮凝:指由于体系表面积的增加、表面能增大,为了降低表面能而生成的更加松散的结构。一般是由于大分子表面活性剂或水溶性高分子的架桥作用,把颗粒串联成结构松散似棉絮的团状物。在这种结构中,离子间的距离比凝聚体或附聚体大得多。

颗粒在液体中的团聚与分散

颗粒表面湿润性对粉体的分散具有重要意义,是粉体分散、固液分离、表面改性和造粒等工艺的理论基础。固体颗粒被液体润湿的过程主要基于颗粒表面的润湿性。固体表面的湿润性由其化学组成和微观结构决定。固体表面自由能越大,越容易被液体湿润;反之亦然。因而,寻求和制备高表面自由能的固体表面成为制备超亲水表面和超疏水表面的前提条件。

低场核磁技术研究湿颗粒团聚的基本原理:

对于润湿的颗粒体系,颗粒表面会附着一层液相分子,这些液相分子因无机相表面的吸附作用而运动受限。但未与颗粒相接触的液相分子运动是自由的,液相分子的驰豫时间(relaxation time)与它所处的运动状态密切相关,自由状态的液相分子的核磁驰豫时间要比束缚状态的液相分子的驰豫时间长得多,颗粒分散性更好的体系吸附溶剂量相对更多,弛豫时间也就更短。因此,可以利用低场核磁共振技术来测量悬浮液体系的驰豫时间,并计算颗粒的湿润比表面积(可利用的吸附表面积),进而用来研究颗粒的团聚状态、分散性稳定性、亲和性以及润湿性等问题。

2022-09-04 20:25:27 200 0
低场核磁共振横相弛豫时间

低场核磁共振横相弛豫时间

在核磁共振现象中,弛豫是指原子核发生共振且处在高能状态时,当射频脉冲停止后,将迅速恢复到原来低能状态的现象。恢复的过程即称为弛豫过程,它是一个能量转换过程,需要一定的时间反映了质子系统中质子之间和质子周围环境之间的相互作用。

完成弛豫过程分两步进行,即纵向磁化强度矢量Mz恢复到最初平衡状态的M0和横向磁化强度Mxy要衰减到零,这两步是同时开始但独立完成的,下面将简单介绍低场核磁共振横相弛豫过程和低场核磁共振横相弛豫时间T2。

低场核磁共振横相弛豫过程

在射频脉冲的作用下,所有质子的相位都相同,它们都沿相同的方向排列,以相同的角速度(或角频率)绕外磁场进动。当射频脉冲停止后,同相位的质子彼此之间将逐渐出现相位差,即失相位。我们把质子由同相位逐渐分散zui终均匀分布,宏观表现为其横向磁化强度矢量Mxy从zui大(对于π/2脉冲来说,为M0)逐渐衰减为0的过程称为横向弛豫过程。

低场核磁共振横相弛豫时间

低场核磁共振横相弛豫时间又称自旋-自旋弛豫时间,通常用Mxymax衰减63%时所需的时间,所以经过一个T2时间,Mxy还存在37%在实际工作中,一般认为Mxy经过5T2时间已基本衰减为零。下图表示π/2脉冲之后Mxy随时间的衰减曲线:

在MRI中,通常用横向弛豫时间T2来描述横向磁化强度Mxy衰减的快慢,如果T2小就说明横向磁化强度Mxy衰减快。否则,若T2长就说明横向磁化强度Mxy衰减慢。

在给定外磁场中,T2仅取决于组织,不同的组织由于其自旋-自旋相互作用效果不同,而这种效果取决于质子间的接近程度。由于不同组织自旋-自旋相互作用效果不同,所以不同组织的T2不同,固体中的T2比液体中的T2短的多。特别注意的是:横向弛豫时间T2比纵向弛豫时间T1快5-10倍,也就是说在纵向磁化强度恢复到M0时,横向磁化强度早已经衰减为零。

2022-11-21 12:02:00 259 0
【直播入口】变场核磁共振技术研究分子运动及相关时间

研究分子运动、分子相关时间的利器:FFC



本期直播

主题:变场核磁共振(FFC)原理及科研应用

时间:2020年4月9日  10:00-10:40

内容要点:

为什么要了解变场核磁?

变场核磁原理及功能

科研中的应用(高分子、多孔介质、造影剂、食品等)


本期直播观看入口


在线听课注意事项

1. 电脑版链接:http://t.yxt.com/MYBHumG1

2. 设备要求:无需下载安装任何插件和APP,扫码即可观看。

3.如在直播课程中遇到无法听到声音、页面无法展示等情况,请退出后重进,如果依然无法解决,请确认您的网络状况是否通畅,再尝试重新登录。

4.报名截止到4月9日上午7:00。


2020-04-07 11:42:17 269 0
低场核磁技术研究超临界co2提高采收率

低场核磁技术研究超临界co2提高采收率

什么叫超临界二氧化碳?

超临界二氧化碳其实就是二氧化碳界于气体和液体之间的状态。可以分三点来理解:

1、随着温度和压力的变化,任何一种物质都存在三种状态气、液、固。液、气共存状态的点叫临界点。

2、超临界流体是指温度和压力均高于其临界点的流体。

3、超临界二氧化碳就是CO2的超临界状态。

二氧化碳的超临界态,在一定的温度和压力下呈现。并且具有怊强的溶解能力,可以根据温度和压力调节溶解能力;

低场核磁技术研究超临界co2提高采收率基本原理:

CO2作为注气驱油最常用的气体之一,由于超临界CO2提高采收率方面优异的表现,以及可以同时完成碳的捕集和封存,受到广泛的关注和探究。核磁共振测试(NMR)直观的探究油相在孔隙中的分布和流动状态。配合多场耦合配件,实现压力、温度对二氧化碳的相态有明显的控制作用。当坏境处于临界温度及临界压力时,CO2会以超临界态的形式存在,他既有气态性质,又有液态性质,能够快速溶解孔隙的有机物,而核磁无法检测到不含H的超临界CO2气体,有效评价储层采收率的提高效果,定量研究油气开采过程。

低场核磁实验装置架构图

实验研究表明,氮气驱蕞终采收率为35.12%,CO2驱最终采收率约为38.40%,在实验条件(32 MPa、75 ℃)下,CO2为超临界状态,具有较强的传质扩散能力,且实验压力高于原油与CO2的最小混相压力(25.0 MPa),在CO2驱过程中驱替前缘易形成混相;而N2在同等条件下较难与原油混相,同时CO2与原油之间的相互作用强于N2,因此CO2驱采收率高于N2。

低场核磁仪器

2022-07-06 21:54:12 224 0
低场核磁技术研究浆料小颗粒团聚

低场核磁技术研究浆料小颗粒团聚

浆料小颗粒团聚可分为三种状态:

凝聚体:指以面相接的原级粒子,其表面积比其单个粒子组成之和小得多,这种状态再分散十分困难。

附聚体:指以点、角相接的原级粒子团族或小颗粒在大颗粒上的附着,其总表面积比凝聚体大,但小于单个粒子组成之和,再分散比较容易。凝聚体和附聚体也称二次粒子。

絮凝:指由于体系表面积的增加、表面能增大,为了降低表面能而生成的更加松散的结构。一般是由于大分子表面活性剂或水溶性高分子的架桥作用,把颗粒串联成结构松散似棉絮的团状物。在这种结构中,离子间的距离比凝聚体或附聚体大得多。

颗粒在液体中的团聚与分散

颗粒表面湿润性对粉体的分散具有重要意义,是粉体分散、固液分离、表面改性和造粒等工艺的理论基础。固体颗粒被液体润湿的过程主要基于颗粒表面的润湿性。固体表面的湿润性由其化学组成和微观结构决定。固体表面自由能越大,越容易被液体湿润;反之亦然。因而,寻求和制备高表面自由能的固体表面成为制备超亲水表面和超疏水表面的前提条件。

低场核磁技术研究浆料小颗粒团聚的基本原理:

对于润湿的颗粒体系,颗粒表面会附着一层液相分子,这些液相分子因无机相表面的吸附作用而运动受限。但未与颗粒相接触的液相分子运动是自由的,液相分子的驰豫时间(relaxation time)与它所处的运动状态密切相关,自由状态的液相分子的核磁驰豫时间要比束缚状态的液相分子的驰豫时间长得多,颗粒分散性更好的体系吸附溶剂量相对更多,弛豫时间也就更短。因此,可以利用低场核磁共振技术来测量悬浮液体系的驰豫时间,并计算颗粒的湿润比表面积(可利用的吸附表面积),进而用来研究颗粒的团聚状态、分散性稳定性、亲和性以及润湿性等问题。

2022-08-24 11:55:42 165 0
低场核磁技术研究颗粒的团聚状态

低场核磁技术研究颗粒的团聚状态

颗粒的团聚根据其作用机理可分为三种状态:

凝聚体:指以面相接的原级粒子,其表面积比其单个粒子组成之和小得多,这种状态再分散十分困难。

附聚体:指以点、角相接的原级粒子团族或小颗粒在大颗粒上的附着,其总表面积比凝聚体大,但小于单个粒子组成之和,再分散比较容易。凝聚体和附聚体也称二次粒子。

絮凝:指由于体系表面积的增加、表面能增大,为了降低表面能而生成的更加松散的结构。一般是由于大分子表面活性剂或水溶性高分子的架桥作用,把颗粒串联成结构松散似棉絮的团状物。在这种结构中,离子间的距离比凝聚体或附聚体大得多。

颗粒在液体中的团聚与分散

颗粒表面湿润性对粉体的分散具有重要意义,是粉体分散、固液分离、表面改性和造粒等工艺的理论基础。固体颗粒被液体润湿的过程主要基于颗粒表面的润湿性。固体表面的湿润性由其化学组成和微观结构决定。固体表面自由能越大,越容易被液体湿润;反之亦然。因而,寻求和制备高表面自由能的固体表面成为制备超亲水表面和超疏水表面的前提条件。

低场核磁技术研究颗粒的团聚状态原理:

对于润湿的颗粒体系,颗粒表面会附着一层液相分子,这些液相分子因无机相表面的吸附作用而运动受限。但未与颗粒相接触的液相分子运动是自由的,液相分子的驰豫时间(relaxation time)与它所处的运动状态密切相关,自由状态的液相分子的核磁驰豫时间要比束缚状态的液相分子的驰豫时间长得多,颗粒分散性更好的体系吸附溶剂量相对更多,弛豫时间也就更短。因此,可以利用低场核磁共振技术来测量悬浮液体系的驰豫时间,并计算颗粒的湿润比表面积(可利用的吸附表面积),进而用来研究颗粒的团聚状态、分散性稳定性、亲和性以及润湿性等问题。

2022-08-31 23:21:53 149 0
低场核磁技术研究胶体溶胀过程

低场核磁技术研究胶体溶胀过程

亲水胶体的溶胀过程是高聚物吸收液体而体积增大过程的现象。胶体化合物的分子结构中含有许多亲水基团,能与水分子发生作用。质点水化后似分子状态分散于水中,形成亲水胶体溶液。如动物胶汁、酶的水溶液及其他含蛋白质的生化制剂、天然的多糖类、粘液质及树胶等等遇水后所形成的胶体溶液均属此类。亲水胶体绝大多数为高分子化合物,所以亲水胶体溶液也称高分子水溶液。随着非极性基因数目的增多,胶体的亲水性能降低,而对半极性溶媒及非极性溶媒的亲和力增加,胶体质点分散在这些溶媒中时,形成的溶液称为亲液胶体溶液或高分子非水溶液。

溶胀是否发生,决定于高聚物和液体的性质。线型高聚物先溶胀而后溶解,体型高聚物只溶胀而不溶解。例如明胶能在水中溶胀,但在有机溶剂中却不溶胀;橡胶能在苯中溶胀,但在水中却不溶胀。有些高聚物在溶胀后会形成溶胶。例如明胶在水中和橡胶在苯中,加热时会形成溶胶。

溶胶又称胶体溶液。由分散质的微粒(线性大小一般在10的负5–7次方厘米间)分散在介质中所形成的分散物系。根据与液体分散介质的关系,可分为亲液溶胶和憎液溶胶两类。与未分散的物质相比,分散相的粒子非常小,总面积非常大,这是溶胶具有的特性。

溶胀过程和胶溶过程实际上就是胶体粒子的再分散过程。胶体粒子本身具有一定的稳定性,比如电荷排斥,水化层的存在等。当这些条件消失的时候,胶体粒子就会团聚,所以加热、加电解质、加相反电荷的胶体等无非是去掉电荷,去掉水化层(或者溶剂层),使胶体团聚在一起。

胶体团聚后,有可能进一步脱水发生化学反应,生成化学键,这样就不会再溶解,再分散了;但是也有可能重新结合水或者溶剂,这时候凝聚了的胶体粒子就体积增大(由于颗粒之间增加了溶剂),即——溶胀,甚至完全分散,溶剂化,即——胶溶。

低场核磁技术研究胶体溶胀过程

低场核磁共振(LF-NMR)在研究基于水迁移率的聚合物网络的水传输和微观结构方面具有巨大潜力。与高分辨率核磁共振不同,低场核磁共振(LF-NMR)主要用于通过测量弛豫时间来阐明反映结构异质性和相互作用的分子迁移率。研究表明,低场核磁共振(LF-NMR)是一种快速、无创、无损的测定水组分分布的方法。该方法可快速评价颗粒原液的团聚与分散状态,可用于胶体溶胀过程研究。

2022-10-17 16:04:22 299 0
低场核磁共振研究草莓水分分布

低场核磁共振研究草莓水分分布

1、实验目的

通过低场核磁共振技术获得四个干燥草莓样品水分分布信息。


2、实验材料

客户提供4个干燥草莓样品,分别编号为空白、80℃-1.5h、80℃-3h 、80℃-4.5h 。


3、实验仪器

纽迈低场核磁共振成像分析仪,磁体强度0.5T,线圈直径为60mm,磁体温度为32.00℃


4、样品制备

将样品放入核磁仪器线圈中,进行测试。称量得到样品的质量如下表所示。



5、实验参数

采用CPMG序列进行T2弛豫分析,参数(略)。


6、实验方法

采用CPMG序列及sirt反演得到样品水分分布曲线。


7、分析及结果

T2弛豫分析

使用迭代寻优的方法将采集到的T2衰减曲线代入弛豫模型中拟合并反演得到样品的T2弛豫信息,包括弛豫时间及其对应的弛豫信号分量,横坐标为范围从10-2 ms到10000 ms对数分布的200个横向弛豫时间分量T2,纵坐标为各弛豫时间对应的信号分量A2i(为便于定量分析,该信号分量经质量的归一化处理),已知信号量与其组分含量成正比关系,积分面积A即为样品的信号量。


T2弛豫时间反映了样品内部氢质子所处的化学环境,与氢质子所受的束缚力及其自由度有关,而氢质子的束缚程度又与样品的内部结构有密不可分的关系。氢质子受束缚越大或自由度越小,T2弛豫时间越短,在T2谱上峰位置较靠左;反之则T2弛豫时间越长,在T2谱上峰位置较靠右。


三个峰分别代表不同弛豫时间的质子分布,峰面积代表该组分质子含量。



从上面可以看出:

1. 从峰个数来看,样品都有三个峰;而且根据峰的弛豫时间,应该归为结合水(T21a)、次结合水(T21b)和不易流动水(T22)。

2. 从峰比例来看,样品的结合水比例均较大,说明样品中水的自由程度都很低,表现出来的横线弛豫时间很小。

3. 样品之间峰的弛豫时间变化不大,峰比例的区别也较小,但是略有区别。样品80℃-1.5h的结合水比例略小于其他组样品。


8、结论

四个样品中水分都主要以结合水形式存在,水的自由程度都很低,表现出来的横线弛豫时间很小,且样品80℃-1.5h的结合水比例略小于其他组样品。


2022-01-21 23:26:57 258 0

12月突出贡献榜

推荐主页

最新话题