热门问答
- 3d机器视觉及功能成像未来发展怎么样
- 机器视觉未来的发展前景怎么样?
- 机器视觉未来前景?
- 1.5t磁共振脑功能成像怎么样
- 机器视觉系统的组成及各部分功能?
- 机器视觉里的较量|3D机器视觉
立体视觉、结构光、激光三角测量以及TOF选手闪亮登场!
3D代表队:异军突起
随着科技的不断进步,特别是工业4.0的到来,广泛采用工业机器人的自动化生产线成为制造业的核心装备。让我们对3D成像解决方案的需求也逐渐增加,传统的2D视觉已无法满足对复杂对象识别和尺寸测量应用日益准确的测量要求。而且,人与机器人协同工作逐渐取代单一人工操作成为主流,而处理复杂的交互情况是传统2D视觉做不到的。因而,3D视觉逐渐崛起成为当今各行业的大势。
现如今,3D视觉有四种主要技术:立体视觉,结构光3D成像,激光三角测量和ToF。下面,就让主页妹好好为大家介绍一下各位选手:
立体视觉
目前立体视觉常用于3D电影中,它通过安装两个相机分别从不同的视角拍摄同一景物,通过对图像特征点的提取和匹配,建立被拍摄景物的几何模型,通过双目视差原理将两台摄像机拍摄的景物协同播放,形成相应的立体3D影像。这类似于我们的大脑如何以视觉方式测量距离。因此,将认知过程转换为系统需要大量的计算工作。
▲立体视觉形成3D影像原理
结构光
结构光是将预定的光图案投影到物体上,然后相机捕捉物体反射的光来分析获得物体的深度信息。结构光对帧速没有概念上的限制,没有运动模糊,而且它对多路径接口具有鲁棒性。
结构光是主动照明,这需要甄选符合条件的相机,还需要透镜与图案投影仪之间精确且稳定的机械对准。其存在失准的风险,并且反射的图案对环境中的光学干扰敏感,仅限于室内应用。
▲结构光测量原理
激光三角测量
激光三角测量系统使用激光将物体上的数千个点照亮,并且使用相机精确定位每个点。它通过测量一条线的几何偏移,该线的值与物体的高度有关。由于激光点、相机和激光形成三角形,因此该技术被称为三角测量,该系统甚至可以使用三角函数来计算出被测物的深度。
激光三角测量通常用于需要高精度、稳定和低温漂移的位移和位置监控的应用中。但是,该技术仅覆盖很短的范围,对环境光敏感,并且仅限于扫描应用。还需要复杂的算法和校准。
▲激光三角测量原理
飞行时间(TOF)
飞行时间(ToF)扫描通过测量激光发出的光在相机和物体之间传播所花费的时间来确定物体的深度,长度和宽度。典型的TOF 3D扫描系统每秒可测量物体上10,000至100,000个点的距离。该系统具有较小的纵横比,使用一台相机一次便可测量完毕,并且在环境光条件下也能很好地运行。缺点包括需要主动照明同步以及潜在的多径干扰和距离混叠。
▲飞行时间(TOF)测量原理
十项全能:Battle,就是要全面
主页姐:上面,我们介绍3D视觉代表队选送的四位选手,接下来我们就开启十项全能比赛吧!各位选手各就各位,RACE START~
不重要的比赛结果
总的来说,无论是立体视觉、结构光、激光三角测量还是TOF,没有哪种技术是更好的,只有哪种技术是更适合的。主页妹想到,这时候视友们也会问了,如何选择面对3D视觉需求选择更适合的技术呢?当然是—找凌云光啊!20多年机器视觉经验,为您臻选出更好的解决方案!
- 3D成像:肿瘤及病理组织中的应用
常规的组织学检查通常使用冷冻或石蜡包埋的样本切片,微米级别厚度的组织切片允许对单个细胞进行标记及表征,但却无法探知生物样本的三维特性。切片分析只对病理样本的局部进行了探测研究,整个病理组织中,有相当大部分的信息仍未被探索。随着组织透明化技术的发展与光片显微镜的诞生,我们终于可以对完整样本进行完整的成像表征。最近发表在Nature Reviews Cancer的一篇综述中[1]总结了组织透明化、成像技术及3D成像的新应用等。
组织透明化方法在近十年内迅速发展,各种化合物的联合使用已被广泛用于减少光散射和光吸收,并增加光学显微镜在成像中的成像深度。虽然组织透明化最初由神经科学家用于描绘小鼠中shu和外周的神经系统,而近几年的研究表明,对于组织的三维成像也可助力发育生物学、免疫学、肿瘤学和肿瘤机理等多种学科。例如肿瘤研究中,三维荧光成像已被用于评估肿瘤迁移性、肿瘤组织结构、细胞异质性、表征肿瘤微环境和评估肿瘤模型的ZL反应等。
作者首先对各种透明化方法的特点进行了比较与介绍,肿瘤因其异质性及致密的结构首先需选择适当的透明化方式。接下来,作者介绍了3D成像在肿瘤研究中的应用:
1.成像并定量:2D成像无法避免因切片带来的数据缺失,3D成像则可以很直接的进行数据定量[2];2.肿瘤结构:3D成像有助于从细胞转化、细胞骨架等肿瘤模型中进行发生、发展分析[3];
3.脉管系统:脉管系统与肿瘤进展及侵袭性相关,3D成像有助于评估抗血管生成的ZL反应[4];
此外,对完整组织的3D成像也有助于对于肿瘤的转移评估、深入探索肿瘤微环境;肿瘤侵袭、传播与耐药性相关的病理研究;3D组织病理学研究等。
参考文献:[1] Almagro J, Messal HA, Zaw Thin M, van Rheenen J, Behrens A. Tissue clearing to examine tumour complexity in three dimensions. Nat Rev Cancer. 2021 Jul 30. doi: 10.1038/s41568-021-00382-w. Epub ahead of print. PMID: 34331034.[2] Wei M, Shi L, Shen Y, Zhao Z, Guzman A, Kaufman LJ, Wei L, Min W. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6608-6617. doi: 10.1073/pnas.1813044116. Epub 2019 Mar 14. PMID: 30872474; PMCID: PMC6452712.[3] Messal HA, Alt S, Ferreira RMM, Gribben C, Wang VM, Cotoi CG, Salbreux G, Behrens A. Tissue curvature and apicobasal mechanical tension imbalance instruct cancer morphogenesis. Nature. 2019 Feb;566(7742):126-130. doi: 10.1038/s41586-019-0891-2. Epub 2019 Jan 30. PMID: 30700911; PMCID: PMC7025886.[4] Dobosz M, Ntziachristos V, Scheuer W, Strobel S. Multispectral fluorescence ultramicroscopy: three-dimensional visualization and automatic quantification of tumor morphology, drug penetration, and antiangiogenic treatment response. Neoplasia. 2014 Jan;16(1):1-13. doi: 10.1593/neo.131848. PMID: 24563615; PMCID: PMC3924547.锘海一站式科研服务,让科研变得更简单!
锘海生命科学为广大客户提供专业的生物组织透明化、免疫染色、平铺光片显微镜3D荧光成像、数据分析、数据存储等一站式科研服务,旨在通过快速、多样化的科研服务为每一位生命科学工作者提供个体化/定制化的解决方案。了解更多相关信息
请联系 021-37827858、13818273779(微信同号)
- 机器视觉发展历程如何?
- 酒精检测仪的未来发展是什么?
酒精检测仪的未来发展是什么?
- 机器视觉发展有哪几个阶段?
- 蛋白酶YZ剂的未来发展
- 未来的印刷术将发展成
- 未来的印刷术将发展成... 未来的印刷术将发展成 展开
- 同步热分析仪:原理、应用与未来发展
引言
同步热分析仪是一种高端科学仪器,用于同时测量样品的热学性能和物理性质。它在科研、工业生产和质量控制等领域具有广泛的应用,如材料科学、化学、冶金、生物医学等。本文将详细介绍同步热分析仪的基本原理、工作流程及其在实际应用中的意义和作用,以期提高读者对该仪器的认识和理解。
上海和晟 HS-STA-002 同步热分析仪基本原理
同步热分析仪主要由热电偶、加热炉、冷却系统、气氛控制系统、数据采集和处理系统等组成。其核心原理是利用热电偶测量样品在加热或冷却过程中的温度变化,并通过数据采集和处理系统对温度变化进行实时监测和分析。
工作流程
实验前准备:选择合适的热电偶和样品托,将样品放置在样品托上,根据实验需求设置加热炉的温度和升温速率,调整气氛控制系统以控制实验环境。
实验过程:启动仪器,加热炉开始升温,同时测量样品的温度变化。数据采集和处理系统将实时监测样品温度,并将数据传输到计算机进行记录和分析。
数据处理:通过计算机软件对实验数据进行处理和分析,生成热学性能曲线和物理性质曲线,以便研究人员进行比较和研究。
意义和作用
同步热分析仪在科学研究中的应用价值非常广泛。首先,它可以帮助研究人员了解样品的热学性能和物理性质,如热膨胀系数、导热系数、比热容等,这对于材料科学、化学等领域的研究非常重要。其次,同步热分析仪可以用于研究物质的相变过程,例如物质的熔化、凝固、相变等,这对于冶金、材料等领域具有重要意义。
在工业生产中,同步热分析仪也有着广泛的应用。例如,它可以用于对材料进行质量控制,通过对样品的热学性能和物理性质的测量,可以判断材料是否符合生产要求。此外,同步热分析仪还可以用于研究材料的热稳定性和耐候性,这对于产品的研发和优化具有重要意义。
未来发展
随着科技的不断发展,同步热分析仪也在不断创新和完善。未来,同步热分析仪将朝着更高的精度、更快的测量速度和更复杂的数据处理能力方向发展。此外,随着环保意识的提高,对环保型气氛控制系统的需求也将越来越高。
总之,同步热分析仪作为一种功能强大的科学仪器,在材料科学、化学、冶金等领域具有广泛的应用价值。随着技术的不断进步和应用需求的不断增加,同步热分析仪将在未来发挥更加重要的作用,为科学研究、工业生产和质量控制提供强有力的支持。
- 磁共振成像的发展历程
- 如何将3D打印机改装成机器视觉系统
- 如何将3D打印机改装成机器视觉系统
- 体视显微镜的成像功能
- 微透镜的大视野3D成像
微透镜
(a) 为微透镜的大视野3D图像,通过hitachi MAP 3D 将多张3D 图像拼接而成。
(b) 为(a)中红框部分的形貌像。通过颜色标尺很容易确定高度信息。
(c)(d)是提取的图.1(b)中划线区域的结果,可以获得每个透镜(箭头 0-1, 2-3)的水平距离、垂直高度以及顶部和底部的角度。
所以,使用Hitachi Map 3D可以获得大视野3D图像和截面轮廓信息。
(a)拼接后的3D图像(x2k), (b)红框内的形貌图
(c)(b)中划线区域的截面
观察机型:FlexSEM1000
观察条件:5 kV, 2000倍, 30Pa 软件:Hitachi Map 3D
Material
【大视野3D观察】
FlexSEM1000
12月突出贡献榜
推荐主页
最新话题
-
- #八一建军节——科技铸盾,仪器护航#
- 如何选择到合适的磷青铜绞线?磷青铜绞线的质量...如何选择到合适的磷青铜绞线?磷青铜绞线的质量解析和如何选择到合适的绞线?磷青铜绞线是一种特殊的铜合金导线,由铜、锡和磷等元素组成,具有很好的机械性能、电气性能和耐腐蚀性。磷青铜绞线基本定义与特性:磷青铜是铜与锡、磷的合金,质地坚硬,可制弹簧。典型成分为铜(90%)、锡(6-9%)及磷(0.03-0.6%)锡元素提升合金的强度和耐腐蚀性,磷则细化晶粒、增强耐磨性铸造性能。耐磨性:表面氧化层使其在特殊环境下耐腐蚀,使用寿命长导电性:保持铜很好导电性能的同时有化电子传输路径非铁磁性:不含铁元素,避免在强磁场环境中产生额外能量损耗弹性:受到外力作用时能迅速恢复原状
- 八一建军节 铁血铸军魂













参与评论
登录后参与评论