仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

硫磺油含量低场核磁检测技术

苏州纽迈分析仪器 2022-06-27 16:31:41 213  浏览
  • 硫磺油含量低场核磁检测技术

    硫磺的生产过程中,根据产品质量和特性要求会添加一定量的油,以提升产品性能以及方便生产和加工。为确保产品质量稳定,需要准确,快速进行硫磺油含量测量。 低场核磁检测技术可快速完成硫磺油含量测量,制样过程非常简单,可实现工业生产过程中的质量检测和质量控制。

    硫磺油含量的传统测试方法:

    硫磺油含量的传统方法是使用溶剂萃取法,该方法检测过程复杂,耗时长,需要有专业技术人员进行操作,人为误差较大,此外,萃取液属于有毒试剂,对操作人员健康和安全存在危害,该方法在工业中越来越难以接受。

    硫磺油含量低场核磁检测技术的基本原理:

    使用自旋回波序列进行测量,图一是自旋回波序列与检测到的核磁信号。在90度射频脉冲后t1处测量了自由感应衰减(FID)NMR信号。此时信号幅度(A1)与样品的两个液相(水分和油分)中的H质子数成正比。180度脉冲后,检测自旋回波信号幅度为A2,此时水的信号已经衰减为0,A2仅为油的信号。

    使用已知硫磺油含量的样品进行定标后,即可测试未知样品的硫磺油含量。低场核磁检测技术测试速度快,可在30秒~3分钟钟内完成测试。测试过程快速无损,可实现工业在线过程测试。

参与评论

全部评论(0条)

热门问答

硫磺油含量低场核磁检测技术

硫磺油含量低场核磁检测技术

硫磺的生产过程中,根据产品质量和特性要求会添加一定量的油,以提升产品性能以及方便生产和加工。为确保产品质量稳定,需要准确,快速进行硫磺油含量测量。 低场核磁检测技术可快速完成硫磺油含量测量,制样过程非常简单,可实现工业生产过程中的质量检测和质量控制。

硫磺油含量的传统测试方法:

硫磺油含量的传统方法是使用溶剂萃取法,该方法检测过程复杂,耗时长,需要有专业技术人员进行操作,人为误差较大,此外,萃取液属于有毒试剂,对操作人员健康和安全存在危害,该方法在工业中越来越难以接受。

硫磺油含量低场核磁检测技术的基本原理:

使用自旋回波序列进行测量,图一是自旋回波序列与检测到的核磁信号。在90度射频脉冲后t1处测量了自由感应衰减(FID)NMR信号。此时信号幅度(A1)与样品的两个液相(水分和油分)中的H质子数成正比。180度脉冲后,检测自旋回波信号幅度为A2,此时水的信号已经衰减为0,A2仅为油的信号。

使用已知硫磺油含量的样品进行定标后,即可测试未知样品的硫磺油含量。低场核磁检测技术测试速度快,可在30秒~3分钟钟内完成测试。测试过程快速无损,可实现工业在线过程测试。

2022-06-27 16:31:41 213 0
不溶性硫磺油含量低场核磁检测技术

不溶性硫磺油含量低场核磁检测技术

硫磺的生产过程中,根据产品质量和特性要求会添加一定量的油,以提升产品性能以及方便生产和加工。为确保产品质量稳定,需要准确,快速进行硫磺油含量测量。 低场核磁检测技术可快速完成硫磺油含量测量,制样过程非常简单,可实现工业生产过程中的质量检测和质量控制。

不溶性硫磺油含量的传统测试方法:

硫磺油含量的传统方法是使用溶剂萃取法,该方法检测过程复杂,耗时长,需要有专业技术人员进行操作,人为误差较大,此外,萃取液属于有毒试剂,对操作人员健康和安全存在危害,该方法在工业中越来越难以接受。

不溶性硫磺油含量低场核磁检测技术的基本原理:

使用自旋回波序列进行测量,图一是自旋回波序列与检测到的核磁信号。在90度射频脉冲后t1处测量了自由感应衰减(FID)NMR信号。此时信号幅度(A1)与样品的两个液相(水分和油分)中的H质子数成正比。180度脉冲后,检测自旋回波信号幅度为A2,此时水的信号已经衰减为0,A2仅为油的信号。

使用已知硫磺油含量的样品进行定标后,即可测试未知样品的硫磺油含量。低场核磁检测技术测试速度快,可在30秒~3分钟钟内完成测试。测试过程快速无损,可实现工业在线过程测试。

2022-07-01 09:19:03 213 0
低场核磁用于顺丁橡胶含量检测

低场核磁用于顺丁橡胶含量检测

顺丁橡胶是顺式-1,4-聚丁二烯橡胶的简称,其分子式为(C4H6)n。顺丁橡胶是由丁二烯聚合而成的结构规整的合成橡胶,其顺式结构含量在95%以上。根据催化剂的不同,可分成镍系、钴系、钛系和稀土系(钕系)顺丁橡胶。顺丁橡胶是仅次于丁苯橡胶的第二大合成橡胶。与天然橡胶和丁苯橡胶相比,硫化后其耐寒性、耐磨性和弹性特别优异,动负荷下发热少,耐老化性尚好,易与天然橡、氯丁橡胶或丁睛橡胶并用。顺丁橡胶特别适用于制造汽车轮胎和耐寒制品,还可以制造缓冲材料及各种胶鞋、胶布、胶带和海绵胶等。

根据顺式1,4含量的不同,顺丁橡胶又可分为低顺式(顺式1,4含量为35%~40%)、中顺式(90%左右)和高顺式(96%~99%)三类。

顺丁橡胶中橡胶含量的多少直接影响着顺丁橡胶的物理化学性能参数,因此顺丁橡胶含量控制是非常重要的。在工业生产中,生产不同用途的橡胶,需要测量橡胶的含量以优化工艺和进行产品质量控制,进而保证产品质量和稳定产品性能。

低场核磁用于顺丁橡胶含量检测原理:

基质的核磁信号衰减非常快,一般在十微秒内衰减为零。而橡胶填料的核磁信号衰减要慢的多,通常信号可以持续几十或几百毫秒。因此,通过对NMR信号进行适当的采样,可以只获取橡胶的核磁信号,从而进行定量测量,图为90度脉冲后检测到的自由感应衰减(FID)信号。在测试之前,根据确定的标准曲线,确定核磁信号强度与橡胶含量的关系,可在30秒—2分钟内测得橡胶含量。

2022-06-24 13:59:28 271 0
低场核磁检测三元乙丙橡胶橡胶含量

低场核磁检测三元乙丙橡胶橡胶含量

三元乙丙橡胶:

三元乙丙橡胶是乙烯、丙烯和少量的非共轭二烯烃的共聚物,是乙丙橡胶的一种,以EPDM表示,因其主链是由化学稳定的饱和烃组成,只在侧链中含有不饱和双键,故其耐臭氧、耐热、耐候等耐老化性能优异,可广泛用于汽车部件、建筑用防水材料、电线电缆护套、耐热胶管、胶带、汽车密封件等领域。

三元乙丙橡胶的结构和特性:

三元乙丙是乙烯、丙烯和非共轭二烯烃的三元共聚物。二烯烃具有特殊的结构,只有两键之一的才能共聚,不饱和的双键主要是作为交链处。另一个不饱和的不会成为聚合物主链,只会成为边侧链。三元乙丙的主要聚合物链是完全饱和的。这个特性使得三元乙丙可以抵抗热,光,氧气,尤其是臭氧。三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有良好的绝缘特性。

三元乙丙橡胶中橡胶含量的多少直接影响着三元乙丙橡胶的物理化学性能参数,因此三元乙丙橡胶橡胶含量控制是非常重要的。在工业生产中,生产不同用途的橡胶,需要测量橡胶的含量以优化工艺和进行产品质量控制,进而保证产品质量和稳定产品性能。

低场核磁检测三元乙丙橡胶橡胶含量原理:

基质的核磁信号衰减非常快,一般在十微秒内衰减为零。而橡胶填料的核磁信号衰减要慢的多,通常信号可以持续几十或几百毫秒。因此,通过对NMR信号进行适当的采样,可以只获取橡胶的核磁信号,从而进行定量测量,图为90度脉冲后检测到的自由感应衰减(FID)信号。在测试之前,根据确定的标准曲线,确定核磁信号强度与橡胶含量的关系,可在30秒—2分钟内测得橡胶含量。

2022-06-27 16:32:35 251 0
低场核磁检测热塑性丁苯橡胶含量

低场核磁检测热塑性丁苯橡胶含量

热塑性丁苯橡胶是苯乙烯-丁二烯-苯乙烯三嵌段共聚物,称为热塑性丁苯嵌段共聚物或热塑性丁苯橡胶,简称SBS。

热塑性丁苯橡胶具有优良的拉伸强度、弹性和电性能,永玖变形小,屈挠和回弹性好,表面摩擦大。耐臭氧、氧和紫外线照射性能与丁苯橡胶类似。透气性优异。由于主链含有双键致使SBS耐老化较差,在高温空气的氧化条件下,丁二烯嵌段会发生交联,从而使硬度和粘度增加。热塑性丁苯橡胶溶于环己烷、甲苯、苯、甲乙酮、醋酸乙酯、二氯乙烷,不溶于水、乙醇、溶剂汽油等。

热塑性丁苯橡胶中橡胶含量的多少直接影响着热塑性丁苯橡胶的物理化学性能参数,因此热塑性丁苯橡胶含量控制是非常重要的。在工业生产中,生产不同用途的橡胶,需要测量橡胶的含量以优化工艺和进行产品质量控制,进而保证产品质量和稳定产品性能。

低场核磁检测热塑性丁苯橡胶含量原理:

基质的核磁信号衰减非常快,一般在十微秒内衰减为零。而橡胶填料的核磁信号衰减要慢的多,通常信号可以持续几十或几百毫秒。因此,通过对NMR信号进行适当的采样,可以只获取橡胶的核磁信号,从而进行定量测量,图为90度脉冲后检测到的自由感应衰减(FID)信号。在测试之前,根据确定的标准曲线,确定核磁信号强度与橡胶含量的关系,可在30秒—2分钟内测得橡胶含量。

2022-07-01 09:19:58 235 0
低场核磁检测特氟龙涂层含量

低场核磁检测特氟龙涂层含量

聚四氟乙烯(特氟龙),俗称“塑料王”,是一种以四氟乙烯作为单体聚合制得的高分子聚合物。 白色蜡状、半透明、耐热、耐寒性优良,可在-180~260ºC长期使用。这种材料具有抗酸抗碱、抗各种有机溶剂的特点,几乎不溶于所有的溶剂。同时,聚四氟乙烯具有耐高温的特点,它的摩擦系数极低,所以可作润滑作用之余,亦成为了易清洁水管内层的理想涂料。

特氟龙涂料是一种独1无2的工业涂料,他有着其他工业涂料无法匹敌的优异特性。

纤维表面涂层,是一种在纤维的基础上采用特殊工艺涂一层具有特殊功能的材料,使纤维增加了特殊的功能。其中氟化涂层提供耐油/水性、易于清洁和阻燃等性能。氟化涂层的用量控制是非常重要的,用来优化工艺从而优化产品的性能。因此,工业生产中需要测量氟化涂层的含量以优化工艺和进行产品质量控制,进而保证产品质量和提升产品性能。

纤维表面氟化涂层含量检测(氟含量检测)(样品大小:可放入25mm口径试管当中,装样高度不超过2.5cm)

低场核磁检测特氟龙涂层含量的基本原理:

纤维表面氟化涂层含量(氟含量检测)的测试原理:不同元素的核磁共振信号特点不同,对于氟化涂层的测试,可直接基于测量氟19的核磁共振(NMR)信号。通过样品质量对获取的NMR信号进行归一化,然后使用适当的校准曲线计算氟含量。使用3-6个已知的氟含量的样品进行定标后,未知样品可在30秒—2分钟钟内完成测试,测试过程快速无损。

低场核磁应用

低场核磁共振主要是指磁场强度比较低的核磁共振仪器。低场核磁共振技术应用领域非常广泛,而且还处在不断拓展之中,低场核磁共振技术主要基于四个方面进行样品分析与检测:(1)基于信号幅值的分析检测;(2)基于图像(信号二维分布)的分析检测;(3)基于弛豫时间的分析检测;

低场核磁共振技术在食品农业、地质勘探、石油化工、生物医药、材料科学等诸多方面体现出越来越广泛的应用,成为一种重要的分析测试工具。

2022-08-03 10:24:45 193 0
结合胶含量测试-低场核磁技术

结合胶含量测试-低场核磁技术

什么是结合胶?

在混炼过程中,橡胶大分子会与活性填料(如炭黑粒子)的表面产生化学和物理的牢固结合,使一部分橡胶结合在炭黑粒子的表面,成为不能溶解于有机溶剂的橡胶,叫结合胶。

结合胶的生成有助于炭黑附聚体在混炼过程中发生破碎和分散均匀,但在混炼过程的初期,即炭黑-橡胶团块破碎和分散以前,过早地生成过多的结合像胶,由于它包覆在炭黑附聚体外面形成了硬度较大的硬膜,反而会使这种高浓度炭黑-橡胶团块难于进一步破碎和分散。所以对于不饱和度高的二烯类橡胶,尤其是天然橡胶,混炼过程初期应严格控制混炼条件,尽量避免混炼温度过分升高,以使炭黑与橡胶之间只发生有限的结合。

结合胶含量的测定一直都是行业难题,传统的化学法测试精度低、受人为主观因素较大。在核磁法中,由于弹性体材料弛豫衰减曲线随样品内部组分状态的改变而改变,通过核磁弛豫技术可快速无损获得结合胶含量。

低场核磁技术

结合胶含量测试低场核磁技术的基本原理:

弹性体材料弛豫衰减曲线随样品内部组分状态的改变而改变。核磁法利用弹性体材料内不同的组分其弛豫时间不同这一原理,实现结合胶含量测试的目的。

结合胶含量测试低场核磁技术的基本原理

结合胶含量测低场核磁技术对样品的要求:

低场核磁技术对测试样品形状、颜色无要求,只有能放进检测探头即可。利用低场核磁技术可快速测得结合胶含量。

2022-06-15 21:02:32 251 0
丁苯橡胶含量测试方法-低场核磁技术

丁苯橡胶含量测试方法-低场核磁技术

丁苯橡胶又称聚苯乙烯丁二烯共聚物。其物理机构性能,加工性能及制品的使用性能接近于天然橡胶,有些性能如耐磨、耐热、耐老化及硫化速度较天然橡胶更为优良,可与天然橡胶及多种合成橡胶并用,广泛用于轮胎、胶带、胶管、电线电缆、医疗器具及各种橡胶制品的生产等领域,是最大的通用合成橡胶品种,也是zui早实现工业化生产的橡胶品种之一。

丁苯橡胶含量测试方法-低场核磁技术

按聚合工艺,丁苯橡胶分为乳聚丁苯橡胶(ESBR)和溶聚丁苯橡胶(SSBR)。与溶聚丁苯橡胶工艺相比,乳聚丁苯橡胶工艺在节约成本方面更占优势,quan球丁苯橡胶装置约有75%的产能是以乳聚丁苯橡胶工艺为基础的。乳聚丁苯橡胶具有良好的综合性能,工艺成熟,应用广泛,产能、产量和消费量在丁苯橡胶中均占首位。充油丁苯橡胶具有加工性能好、生热低、低温屈挠性好等优点,用于胎面橡胶时具有优异的牵引性能和耐磨性,充油后橡胶可塑性增强,易于混炼,同时可降低成本,提高产量。目前,世界上充油丁苯橡胶约占丁苯橡胶总产量的50-60%。

SBR是一种耗量蕞大的通用橡胶,应用广泛,除要求耐油、耐热、耐特种介质等特殊情况外的一般场合均可使用。主要用于轮胎工业,另外还用于运输带的覆盖胶,输水胶管,胶鞋大底,胶辊,防水橡胶制品,胶布制品、微孔海绵制品、防震制品等。

橡胶含量测试,低场核磁法原理:

基质的核磁信号衰减非常快,一般在十微秒内衰减为零。而橡胶填料的核磁信号衰减要慢的多,通常信号可以持续几十或几百毫秒。因此,通过对NMR信号进行适当的采样,可以只获取橡胶的核磁信号,从而进行定量测量,图为90度脉冲后检测到的自由感应衰减(FID)信号。在测试之前,根据确定的标准曲线,确定核磁信号强度与橡胶含量的关系,可在30秒—2分钟内测得橡胶含量。

2022-06-21 09:12:00 236 0
表面活性剂含量怎么测?低场核磁技术

表面活性剂含量怎么测?低场核磁技术

什么是表面活性剂?

表面活性剂是指是能使目标溶液表面张力显著下降的物质。具有固定的亲水亲油基团,在溶液的表面能定向排列。表面活性剂的分子结构具有两性:一端为亲水基团,另一端为疏水基团;亲水基团常为极性基团,如羧酸、磺酸、硫酸、氨基或胺基及其盐,羟基、酰胺基、醚键等也可作为极性亲水基团;而疏水基团常为非极性烃链,如8个碳原子以上烃链。表面活性剂分为离子型表面活性剂(包括阳离子表面活性剂与阴离子表面活性剂)、非离子型表面活性剂、两性表面活性剂、复配表面活性剂、其他表面活性剂等。

表面活性剂的特性:

表面活性剂通过在气液两相界面吸附降低水的表面张力,也可以通过吸附在液体界面间来降低油水界面张力。许多表面活性剂也能在本体溶液中聚集成为聚集体。

表面活性剂吸附性:

溶液中的正吸附:增加润湿性、乳化性、起泡性;

固体表面的吸附:非极性固体表面单层吸附,极性固体表面可发生多层吸附。

表面活性剂的分类:

根据所需要的性质和具体应用场合不同,有时要求表面活性剂具有不同的亲水亲油结构和相对密度。通过变换亲水基或亲油基种类、所占份额及在分子结构中的位置,可以达到所需亲水亲油平衡的目的。经过多年研究和生产,已派生出许多表面活性剂种类,每一种类又包含众多品种,给识别和挑选某个具体品种带来困难。因此,必须对成千上万种表面活性剂作一科学分类,才有利于进一步研究和生产新品种,并为筛选、应用表面活性剂提供便利。

低场核磁技术告诉你表面活性剂含量怎么测

核磁共振弛豫测量可用于研究表面材料上吸附的表面活性剂。液体中的游离表面活性剂对液体的弛豫时间影响很小,而颗粒界面的表面活性剂对分散体系的弛豫时间影响很大。利用该性质可测定界面活性剂的浓度。为了吸附表面活性剂,活性剂必须取代已经润湿在材料表面的流体,因此,测得的核磁共振弛豫时间会发生改变。表面活性剂浓度(c)正比与表面吸附液体比例(PS),通过弛豫特性可计算得到表面活性剂含量。

2022-11-07 14:43:00 248 0
如何计算表面活性剂含量?低场核磁技术

如何计算表面活性剂含量?低场核磁技术

什么是表面活性剂?

表面活性剂是指是能使目标溶液表面张力显著下降的物质。具有固定的亲水亲油基团,在溶液的表面能定向排列。表面活性剂的分子结构具有两性:一端为亲水基团,另一端为疏水基团;亲水基团常为极性基团,如羧酸、磺酸、硫酸、氨基或胺基及其盐,羟基、酰胺基、醚键等也可作为极性亲水基团;而疏水基团常为非极性烃链,如8个碳原子以上烃链。表面活性剂分为离子型表面活性剂(包括阳离子表面活性剂与阴离子表面活性剂)、非离子型表面活性剂、两性表面活性剂、复配表面活性剂、其他表面活性剂等。

表面活性剂的特性:

表面活性剂通过在气液两相界面吸附降低水的表面张力,也可以通过吸附在液体界面间来降低油水界面张力。许多表面活性剂也能在本体溶液中聚集成为聚集体。

表面活性剂吸附性:

溶液中的正吸附:增加润湿性、乳化性、起泡性;

固体表面的吸附:非极性固体表面单层吸附,极性固体表面可发生多层吸附。

表面活性剂的分类:

根据所需要的性质和具体应用场合不同,有时要求表面活性剂具有不同的亲水亲油结构和相对密度。通过变换亲水基或亲油基种类、所占份额及在分子结构中的位置,可以达到所需亲水亲油平衡的目的。经过多年研究和生产,已派生出许多表面活性剂种类,每一种类又包含众多品种,给识别和挑选某个具体品种带来困难。因此,必须对成千上万种表面活性剂作一科学分类,才有利于进一步研究和生产新品种,并为筛选、应用表面活性剂提供便利。

低场核磁技术告诉你如何计算表面活性剂含量

核磁共振弛豫测量可用于研究表面材料上吸附的表面活性剂。液体中的游离表面活性剂对液体的弛豫时间影响很小,而颗粒界面的表面活性剂对分散体系的弛豫时间影响很大。利用该性质可测定界面活性剂的浓度。为了吸附表面活性剂,活性剂必须取代已经润湿在材料表面的流体,因此,测得的核磁共振弛豫时间会发生改变。表面活性剂浓度(c)正比与表面吸附液体比例(PS),通过弛豫特性可计算得到表面活性剂含量。

2022-11-14 16:50:14 226 0
低场核磁反演技术

低场核磁反演技术

无论是低场核磁纵向弛豫还是低场核磁横向弛豫,对于决大多数样品来说,低场核磁弛豫信号都可以用多指数函数来表达。通常情况下,分别利用CPMG实验和IR实验来检测样品的横向弛豫过程和纵向弛豫过程,低场核磁弛豫信号的数学表达式如公式(1)和公式(2)所示:

其中fi表示样品中第i种成分的信号强度,总信号的大小是所有成分产生信号大小的总和,T2i和T1i表示样品中第i种成分的横向弛豫时间和纵向弛豫时间。

低场核磁反演技术:

弛豫信号反演的目标是通过上面的公式(1)、公式(2)来计算样品中的每个值(或者称为样品中质子分布的密度函数,也称为T1分布或T2分布)。下面采用矩阵的形式重新改写上述数学表达式:

Y=A * F

低场核磁反演技术实例:

以多组分T2反演为例,如下图,左边是回波串,右边是反演结果(T2分布)。下式表示每一个回波的等式系统。一般物质的T2分布是一个连续函数,但是为简化反演,计算使用一个多指数模型,并假定T2分布包含有m个独立的弛豫时间T2i,对应的幅值分量为fi。T2i的值是预先选定的(如0.5ms,1ms,2ms,4ms,8ms,16ms,32ms,64ms,128ms,256ms,512ms,…)。反演的过程主要是确定每个分布的孔隙度分量.

低场核磁反演技术(T2分布)

定组分反演和二维反演在原理上和多组分反演都是一致的,是一个设置模型不断寻优的过程。不同的方法间,模型函数和寻优方法会有稍许不同。

2022-06-13 10:25:30 204 0
硫磺粉末含油量测试(低场核磁法)

硫磺粉末含油量测试(低场核磁法)

背景介绍:

化学粉末(如硫磺)的生产过程中,根据产品质量和特性要求会添加一定量的油,以提升产品性能以及方便生产和加工。粉末中还包含水分。这些液体在粉末中的含量是影响产品质量的重要参数。为确保产品质量稳定,需要准确,快速进行测量。 低场核磁快速可快速完成油、水含量测试,制样过程非常简单,为实现工业生产过程中的质量检测和质量控制提供可能。


传统测试方法介绍:

传统方法是使用溶剂萃取法检测硫磺中的含油量,该方法检测过程复杂,耗时长,需要有专业技术人员进行操作,人为误差较大,此外,萃取液属于有毒试剂,对操作人员健康和安全存在危害,该方法在工业中越来越难以接受。


硫磺粉末油含量测试(低场核磁法)基本原理:

使用自旋回波序列进行测量,图一是自旋回波序列与检测到的核磁信号。在90度射频脉冲后t1处测量了自由感应衰减(FID)NMR信号。此时信号幅度(A1)与样品的两个液相(水分和油分)中的H质子数成正比。

180度脉冲后,检测自旋回波信号幅度为A2,此时水的信号已经衰减为0,A2仅为油的信号。 因此,两个信号幅度之差A1-A2与样品的含水量成正比。



使用已知的水分、油含量的样品进行定标后,未知样品可在30秒~3分钟钟内完成测试。测试过程快速无损,可实现工业在线过程测试。



此外,与化学方法相比,核磁法具有更好的重现性,不需要化学溶剂,并且可以由未经培训的人员进行操作。


硫磺粉末含油量测试(低场核磁法)


2022-04-13 16:40:48 305 0
纤维含量与树脂含量-低场核磁技术介绍

纤维含量与树脂含量-低场核磁技术介绍

低场核磁技术

核磁共振是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。孤立原子核,在同样强度的外磁场中,只对某一特定频率的射频场敏感。分子结构中不同位置的原子核,所感受到的外加磁场的强度各不相同,从而对不同频率的射频场敏感,导致核磁共振信号的差异。

时域核磁共振信号图

树脂含量测量

传统树脂含量测量方法有萃取法、溶解法和灼烧法。萃取法和溶解法不适用于其增强材料在溶剂中有增重或减重及B阶段程度高的预浸料。 灼烧法只适用于玻璃纤维及其织物的预浸料。低场核磁方法是一种全新的快速无损树脂含量测量方法,测试方便快捷,适合企业研发和生产过程中的质检质控。

纤维表面树脂,是一种在纤维加工制作成纤维制品过程中,用来黏合固化纤维,提高纤维制品性能的材料。树脂为纤维提供固化、传导应力和保护等作用。树脂的用量控制是非常重要的,用来优化工艺从而优化产品的性能。因此,工业生产中需要测量树脂的含量以优化工艺和进行产品质量控制,进而保证产品质量和提升产品性能。

纤维含量与树脂含量-低场核磁技术应用原理

纤维表面树脂含量检测的测试原理:碳纤维、玻纤维没有氢质子,不存在核磁共振氢信号,而树脂存在核磁共振氢信号。因此,通过对NMR信号进行采样,获取树脂核磁信号,从而进行定量测量。在测试之前,根据确定的标准曲线,确定核磁信号强度与树脂含量的关系,可在30秒 – 2分钟内测得树脂含量。

2022-08-12 11:24:24 304 0
水驱剩余油分布-低场核磁技术

水驱剩余油分布-低场核磁技术

随着水驱开发的进行,国内大多数油田皆已进入高含水、高采出程度的“双高”阶段,针对二次采油未能采出的未波及区的剩余油和波及区的残余油,认识剩余油为油田二次采油及三次采油提供重要依据尤为重要。

剩余油分布是指剩余油在地层中的分布情况,影响剩余油分布的因素众多,主要受静态储层(地质的)和动态注采状况(开发的)双重因素的影响。静态储层因素是根本的、内在的因素,注采状况(开发条件)是影响剩余油分布的外部因素。

水驱剩余油分布-低场核磁技术

基于核磁对氢信号优秀的捕捉能力,在油气藏储层研究中,发挥了巨大的作用。搭配多场耦合配件,可以模拟地层真实高温高压环境,岩心(水驱油核磁共振实验、水驱剩余油分布实验、微观驱替实验、多相驱替实验)不同尺寸孔隙中的油水信号在核磁T2谱中对应的弛豫时间不同,随着驱替实验(水驱油核磁共振实验、水驱剩余油分布实验、微观驱替实验、多相驱替实验)的进行,核磁T2谱随着岩心内部油水相态(多相驱替)的变化而发生变化,可以用定量来研究地层的油气开采过程。同时基于核磁成像功能,可以实现对整个驱替过程(水驱油核磁共振实验、水驱剩余油分布实验、微观驱替实验、多相驱替实验)的各个阶段进行成像,生动形象的观察动态变化。实现驱替过程(水驱油核磁共振实验、水驱剩余油分布实验、微观驱替实验、多相驱替实验)中油水变化的可视化。

水驱剩余油分布-低场核磁仪器

MacroMR高温高压岩心驱替可视化系统能够结合传统的外围驱替系统,实现模拟地层高温高压环境,对岩心进行全过程可视化驱替研究,可视化可以定性的评价岩心驱替情况,通过谱图变化可定量计算出驱替量的多少;可以任意层面、多角度对岩心进行无损切片选层观测和分析;

 

2022-07-29 10:00:23 206 0
低场核磁检测热塑性弹性体橡胶含量

低场核磁检测热塑性弹性体橡胶含量

什么是热塑性弹性体?

热塑性弹性体TPE/TPR,又称人造橡胶或合成橡胶。其产品既具备传统交联硫化橡胶的高弹性、耐老化、耐油性各项优异性能,同时又具备普通塑料加工方便、加工方式广的特点。可采用注塑、挤出、吹塑等加工方式生产,水口边角粉碎后100%直接二次使用。既简化加工过程,又降低加工成本,因此热塑性弹性体TPE/TPR材料已成为取代传统橡胶的蕞新材料,其环保、无毒、手感舒适、外观精美,使产品更具创意。因此也是一支更具人性化、高品位的新型合成材料,也是世界化标准性环保材料。

热塑性弹性体的主要用途:

热塑性弹性体是介于橡胶与树脂之间的一种新型高分子材料,不仅可以取代部分橡胶,还能使塑料得到改性。热塑性弹性体所具有的橡胶与塑料的双重性能和宽广的特性,使之在橡胶工业中广泛用于制造胶鞋、胶布等日用制品和胶管、胶带、胶条、胶板、胶件以及胶粘剂等各种工业用品。同时,热塑性弹性体还可代替橡胶大量用在PVC、PE、PP、PS等通用热塑性树脂甚至PU、PA、CA等工程塑料的改性上面,使塑料工业也出现了崭新的局面。

热塑性弹性体中橡胶含量的多少直接影响着热塑性弹性体的物理化学性能参数,因此热塑性弹性体橡胶含量控制是非常重要的。在工业生产中,生产不同用途的热塑性弹性体,需要测量橡胶的含量以优化工艺和进行产品质量控制,进而保证产品质量和稳定产品性能。

低场核磁检测热塑性弹性体橡胶含量原理:

基质的核磁信号衰减非常快,一般在十微秒内衰减为零。而橡胶填料的核磁信号衰减要慢的多,通常信号可以持续几十或几百毫秒。因此,通过对NMR信号进行适当的采样,可以只获取橡胶的核磁信号,从而进行定量测量,图为90度脉冲后检测到的自由感应衰减(FID)信号。在测试之前,根据确定的标准曲线,确定核磁信号强度与橡胶含量的关系,可在30秒—2分钟内测得橡胶含量。

2022-07-04 10:03:55 290 0
低场核磁法检测复合材料环氧树脂含量

低场核磁法检测复合材料环氧树脂含量

什么是环氧树脂

环氧树脂是一种高分子聚合物,分子式为(C11H12O3)n,是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。双酚A型环氧树脂不仅产量蕞大,品种蕞全,而且新的改性品种仍在不断增加,质量正在不断提高。

环氧树脂的特性

环氧树脂具有仲羟基和环氧基,仲羟基可以与异氰酸酯反应。环氧树脂作为多元醇直接加入聚氨酯胶黏剂含羟基的组分中,使用此方法只有羟基参加反应,环氧基未能反应。

用酸性树脂的羧基,使环氧开环,再与聚氨酯胶黏剂中的异氰酸酯反应。还可以将环氧树脂溶解于乙酸乙酯中,添加磷酸加温反应,其加成物添加到聚氨酯胶黏剂中,可使胶的初黏、耐热性以及水解稳定性等都得到提高。还可用醇胺或胺反应生成多元醇,在加成物中有叔氮原子的存在,可加速NCO反应。

复合材料环氧树脂含量测量

材料表面树脂,是一种在加工制作成品过程中,用来黏合固化纤维,提高纤维制品性能的材料。树脂为纤维提供固化、传导应力和保护等作用。树脂的用量控制是非常重要的,用来优化工艺从而优化产品的性能。因此,工业生产中需要测量树脂的含量以优化工艺和进行产品质量控制,进而保证产品质量和提升产品性能。

低场核磁法测量复合材料环氧树脂含量应用原理

低场核磁法是研究高分子材料中分子动力学的一种非常重要和有效的手段.该技术的一个重要特点是可以通过合理的实验方法,实现对研究体系中从低频(Hz)到中频(kHz)乃至高频(MHz)范围内分子运动的观测.因此.核磁法非常适合研究高分子体系中各类不同尺度分子运动.高分子材料中分子运动与交联密度密切相关,通过分子运动的信息即可反映样品的特性。

树脂存在核磁共振氢信号,通过对NMR信号进行采样,获取树脂核磁信号,从而进行定量测量。在测试之前,根据确定的标准曲线,确定核磁信号强度与树脂含量的关系,可在30秒 – 2分钟内测得树脂含量。

2022-08-01 12:18:34 327 0
结合胶含量一般有多少?低场核磁检测技术

结合胶含量一般有多少?低场核磁检测技术

什么是结合胶?

在混炼过程中,橡胶大分子会与活性填料(如炭黑粒子)的表面产生化学和物理的牢固结合,使一部分橡胶结合在炭黑粒子的表面,成为不能溶解于有机溶剂的橡胶,叫结合胶。

结合胶的生成有助于炭黑附聚体在混炼过程中发生破碎和分散均匀,但在混炼过程的初期,即炭黑-橡胶团块破碎和分散以前,过早地生成过多的结合像胶,由于它包覆在炭黑附聚体外面形成了硬度较大的硬膜,反而会使这种高浓度炭黑-橡胶团块难于进一步破碎和分散。所以对于不饱和度高的二烯类橡胶,尤其是天然橡胶,混炼过程初期应严格控制混炼条件,尽量避免混炼温度过分升高,以使炭黑与橡胶之间只发生有限的结合。

结合胶含量一般有多少?低场核磁检测技术

结合胶含量的测定一直都是行业难题,传统的化学法测试精度低、受人为主观因素较大。在核磁法中,由于弹性体材料弛豫衰减曲线随样品内部组分状态的改变而改变,通过核磁弛豫技术可快速无损获得结合胶含量。

低场核磁技术

结合胶含量一般有多少?低场核磁检测技术的基本原理:

弹性体材料弛豫衰减曲线随样品内部组分状态的改变而改变。核磁法利用弹性体材料内不同的组分其弛豫时间不同这一原理,实现结合胶含量测试的目的。

结合胶含量测试低场核磁技术的基本原理

结合胶含量一般有多少?低场核磁检测技术对样品的要求:

低场核磁技术对测试样品形状、颜色无要求,只有能放进检测探头即可。利用低场核磁技术可快速测得结合胶含量。

2022-06-17 11:32:55 233 0
岩心注聚合物驱油实验低场核磁技术

岩心注聚合物驱油实验低场核磁技术

什么是聚合物驱油

聚合物驱油是指向地层中注入聚合物进行驱油的一种增产措施。在宏观上,它主要靠增加驱替液粘度,降低驱替液和被驱替液的流度比,从而扩大波及体积;在微观上,聚合物由于其固有的粘弹性,在流动过程中产生对油膜或油滴的拉伸作用,增加了携带力,提高了微观洗油效率。

聚合物驱油技术由于其机理比较清楚、技术相对简单,世界各国开展研究比较早,美国于五十年代末、六十年代初开展了室内研究,1964年进行了矿场试验。1970年以来,前苏联、加拿大、英国、法国、罗马尼亚和德国等国家都迅速开展了聚合物驱矿场试验。从20世纪60年代至今,荃世界有200多个油田或区块进行了聚合物驱试验。聚合物驱是在注入水中加入少量水溶性高分子聚合物,通过增加水相粘度和降低水相渗透率来改善流度比、提高波及系数,从而提高原油采油率。

注聚合物驱油实验是一种较为经济的强化采油方法。一般认为,聚合物的主要作用是增加水相粘度,及因聚合物滞留5I起渗透率下降.从而导致驱替液在油层中的流度明显降低。核磁共振成像研究结果表明聚合物驱油可以提高孔隙利用系数,从而提高驱油效果。研究还表明聚合物溶液的粘弹性对提高驱油效果也有一定的作用。

 

低场核磁技术简介

低场核磁共振技术主要检测为H质子,也可以用于F信号测试。含H样品经过特定频率的射频激励后,产生核磁共振信号。H核磁共振信号对应有T1、T2两个主要参数,通过测试T1、T2弛豫时间并进行建模,可用于石油勘探、岩土、能源等多方面研究。

岩心注聚合物驱油实验低场核磁技术原理与装置

在线核磁共振成像技术通过核磁共振成像扫描仪使用强磁场、电场梯度扫描待测试样信号,在石油勘探开发行业中,常用于分析储层流体的弛豫时间对储层中的油水分布进行成像。核磁共振测试信号来自氢原子,氢原子越多则信号就越强,然而,由于水及原油中均有氢原子,难以区分水相和油相的信号。由于氟油无氢原子,故选用氟油替代原油进行实验,使所测信号均为水相。由于实验中仅水相存在氢原子,故岩心中的剩余油饱和度与核磁共振T2谱信号相关,因此可以通过分析核磁共振T2谱弛豫时间来计算水驱、聚合物驱后剩余油分布的变化并进行对比分析。

低场核磁驱替实验装置

2022-08-17 23:31:53 276 0

12月突出贡献榜

推荐主页

最新话题