气相色谱仪检测器的原理
气相色谱仪主要由检测器、放大器和记录器等部件组成。气相色谱仪检测器的性能要求:通用性强或专用性好;响应范围宽,可用于常量和痕量分析;稳定性好,噪音低;死体积小,响应快;线性范围宽,便于定量;操作简便耐用。气相色谱仪检测器按其检测特性分类可分为浓度型检测器和质量型检测器。气相色谱仪常用的检测器分述如下:
1、热导检测器(TCD)
结构:热敏元件装入检测池池体中,制成热导池,再将热导池与电阻组成惠斯顿电桥。
原理:热敏电阻消耗的电能所产生的热与载气热传导和强制对流等散失的热达到热动平衡,当载气中有组分进入热导池时由于组分的导热系数与载气不同,热平衡被破坏,热敏电阻温度发生变化,其电阻值也随之发生变化,惠斯顿电桥输出电压不平衡的信号,记录该信号从而得到色谱峰。
应用:热导检测器是一种通用的非破坏性浓度型检测器,理论上可应用于任何组分的检测,但因其灵敏度较低,故一般用于常量分析。
2、氢火焰离子化检测器(FID)
结构:金属圆筒做外壳,内部装有燃烧的喷嘴,载气及组分从色谱柱流出后与氢气(必要时还有尾吹气)一起从喷嘴逸出并与喷嘴周围的空气燃烧。喷嘴附近装有发射极和收集极,两极间形成电场。
原理:FID是以氢气在空气中燃烧所生成的热量为能源,组分燃烧时生成离子,同时在电场作用下形成离子流。组分在火焰中生成离子的机理,至今不是很清楚。
工作条件:温度一般应在150℃以上以防积水;氢气:氮气:空气=1:1:10。
性能与应用:FID是多用途的破坏性质量型检测器。灵敏度高,线性范围宽,广泛应用于有机物的常量和微量检测。
3、氮磷检测器(NPD)
结构:与氢火焰离子化检测器类似,但在火焰喷嘴与收集极之间,装有铷珠(硅酸铷,Rb2O·SiO2)。
原理:一些研究者提出了一些不同的机理,但都不能完满地解释实验现象。
工作条件:两种操作方式,NP方式和P方式,其工作条件也不一样。
性能与应用:NPD是选择性检测器。NP操作方式时,可用于测定含氮和含磷的有机化合物;P操作方式时,可用于测定含磷的有机化合物。作为选择性检测器,对于检测的化合物灵敏度非常高,为其它检测器所不及。
4、电子捕获检测器(ECD)
结构:检测室内有正负电极与β-射线源,目前所使用的Z佳的放射源是Ni63,在衰变中没有γ辐射,产生的β射线能量低,半衰期长,可用到400℃。
原理:检测室内的放射源放出β-射线粒子(初级电子),与通过检测室的载气碰撞产生次级电子和正离子,在电场作用下,分别向与自己极性相反的电极运动,形成检测室本底电流,当具有负电性的组分(即能捕获电子的组分)进入检测室后,捕获了检测室内的电子,变成带负电荷的离子,由于电子被组分捕获,使得检测室本底电流减少,产生倒的色谱峰信号。
工作条件:载气一般选用高纯氮气,气体中微量氧和微量水会污染检测室,必须用净化管除去。
性能与应用:ECD是浓度型选择性检测器,对负电性的组分能给出极显著的响应信号。
用于分析卤素化合物、多核芳烃、一些金属螯合物和甾族化合物。
5、火焰光度检测器(FPD)
结构:一般分为燃烧和光电两部分;前者为火焰燃烧室,与FID相似,后者由滤光片和光电倍增管等组成。
原理:组分在富氢(H2﹕O2>3)的火焰中燃烧时组分不同程度地变为碎片或原子,其外层电子由于互相碰撞而被激发,当电子由激发态返回低能态或基态时,发射出特征波长的光谱,这种特征的光谱通过经选择的干涉滤光片测量(含有磷、硫、硼、氮、卤素等的化合物均能产生这种光谱)。如硫在火焰中产生350-430nm的光谱,磷产生480-600nm的光谱。
工作条件:通入的氢气量必须多于通常燃烧所需要的氢气量,即在富氢情况下燃烧得到火焰。
性能与应用:FPD为质量型选择性检测器,主要用于测定含硫、含磷化合物,其信号比碳氢化合物几乎高一万倍。广泛应用于石油产品中微量硫化合物及农药中有机磷化合物的分析。
6、其它检测器
质谱仪、傅立叶变换红外光谱仪、AED、SCD、ELCD、PID、HID等。
全部评论(0条)
推荐阅读
-
- 气相色谱仪检测器的原理
- 气相色谱仪主要由检测器、放大器和记录器等部件组成。气相色谱仪检测器按其检测特性分类可分为浓度型检测器和质量型检测器
-
- 气相色谱仪检测器的原理
- 气相色谱仪主要由检测器、放大器和记录器等部件组成。气相色谱仪检测器的性能要求:通用性强或专用性好;响应范围宽,可用于常量和痕量分析;稳定性好,噪音低;线性范围宽,便于定量;操作简便耐用。
-
- 气相色谱仪检测器的选择
- 气相色谱仪检测器是检验色谱柱后流出物质的成分及浓度变化的装置,它可以将这种变化转化为电信号,是气相色谱分析中不可或缺的部分。
-
- 气相色谱仪检测器的选择
- 气相色谱仪检测器是检验色谱柱后流出物质的成分及浓度变化的装置,它可以将这种变化转化为电信号,是气相色谱分析中不可或缺的部分。
-
- 气相色谱仪检测器使用注意事项
- 气相色谱仪检测器是将气相色谱仪色谱柱流出载气中被分离组分的浓度(或物质量)变化转化为电信号(电压或电流)变化的装置。
-
- 气相色谱仪的原理
- 本研究中详细介绍了气相色谱分析仪的基本组成以及各部分的结构、功能和原理,包括气相色谱分析仪的发展,为使用这项仪器的人们提供指导和参考。
-
- 液相色谱仪检测器
- 而液相色谱仪检测器则是其核心组成部分,负责检测分离出的组分并转化为可读信号,以实现高效、准确的分析。这篇文章将介绍液相色谱仪检测器的工作原理、常见类型、应用以及选择时的注意事项,帮助您更好地了解这一关键设备的作用和技术优势。
-
- 常见的液相色谱仪检测器
- 检测器又称鉴定器。是检测色谱分离组分物理或化学性质或含量变化(多数情况是将其转化为相应的电压、电流信号)的一种仪器装置。它是液相色谱仪中的关键部件,色谱分离过程的眼睛。
-
- 液相色谱仪紫外检测器的原理及应用
- 液相色谱仪紫外检测器,是基于溶质分子吸收紫外光的原理设计的检测器,当一束单色光透过流动池时,若流动相不吸收光,则吸收度A与吸光组分的浓度C和流动池的光径长度L成正比。
-
- 气相色谱仪分离原理
- 气相色谱仪的分离原理是利用要分离的诸组分在流动相(载气)和固定相两相间的分配有差异(即有不同的分配系数)使这些组分得到分离。
-
- 气相色谱仪工作原理
- 气相色谱仪是利用色谱分离技术和检测技术,对多组分的复杂混合物进行定性和定量分析的仪器。
-
- 气相色谱仪分离原理
- 气相色谱仪的理论基础主要表现在两个方面,即色谱过程动力学和色谱过程热力学,也可以这样说,组分是否能分离开取决于其热力学行为,而气相色谱仪分离得好不好则取决于其动力学过程。
-
- 红外光谱仪检测器类别,红外光谱仪检测器类别是什么?
- 红外光谱仪检测器的种类繁多,每种检测器在性能、适用范围以及成本等方面都有不同的优势和局限。在选择合适的检测器时,了解各类检测器的工作原理和特性是关键。
-
- 原子吸收光谱仪检测器
- 在这些应用中,检测器作为原子吸收光谱仪的关键组成部分,起着至关重要的作用。本文将深入探讨原子吸收光谱仪检测器的工作原理、功能及其在分析中的应用,帮助读者更好地理解其在现代分析化学中的重要性。
-
- icp-oes检测器种类
- 本文将介绍ICP-OES检测器的主要种类,以及它们各自的优势和应用场景,帮助读者更好地理解该设备在不同领域中的使用方式。
-
- 气相色谱检测器性能指标
- 将色谱柱后流出物质的信号转换为电信号的装置,即为气相色谱检测器。根据不同的信号记录方式,检测器包括积分型检测器和微分型检测器。
-
- 液相色谱仪检测器的维护保养
- 检测器是液相色谱仪分析系统中的核心部件,它的性能和灵敏度直接影响到检测结果的准确性,影响液相色谱仪检测器的因素较多,在使用检测器进行液相色谱仪样品检测时若发现检测器故障应当及时排除。
-
- GX液相色谱仪常见的检测器
- 高效液相色谱仪最常用的检测器为紫外检测器,包括二极管阵列检测器,其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和化学反应检测器等。
-
- 便携式气相色谱仪结构,便携式气相色谱仪结构原理
- 检测器是便携式气相色谱仪的另一关键部件,负责对色谱柱分离后的组分进行检测。常见的检测器包括火焰离子化检测器(FID)、热导检测器(TCD)、电子捕获检测器(ECD)等。
-
- 成都便携式气相色谱仪原理
- 本文将深入探讨成都便携式气相色谱仪的工作原理,分析其结构特点、优势及应用,旨在帮助读者全面理解该设备的基本工作机制及其在不同领域中的广泛应用。
①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。
②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。
③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi
参与评论
登录后参与评论