Hydrate formation was studied using water droplets acoustically levitated in high-pressure natural gas. Despite the absence of solid interfaces, the droplets’ area-normalised nucleation rate was about four times faster than in steel autoclave measurements with interfacial areas roughly 200 times larger. Multiple stages of stochastic, template-free hydrate growth were observed.
Hydrate formation was studied using water droplets acoustically levitated in high-pressure natural gas. Despite the absence of solid interfaces, the droplets’ area-normalised nucleation rate was about four times faster than in steel autoclave measurements with interfacial areas roughly 200 times larger. Multiple stages of stochastic, template-free hydrate growth were observed.[详细]
The contactless coalescence of a droplet is of paramount importance for physical and
industrial applications. This paper describes a coalescence method to be used mid-air via acoustic levitation using an ultrasonic phased array system. Acoustic levitation using ultrasonic phased arrays provides promising lab-on-a-drop applications, such as transportation, coalescence, mixing, separation, evaporation, and extraction in a continuous operation.
详情请见文章。[详细]
The contactless coalescence of a droplet is of paramount importance for physical and
industrial applications. This paper describes a coalescence method to be used mid-air via acoustic levitation using an ultrasonic phased array system. Acoustic levitation using ultrasonic phased arrays provides promising lab-on-a-drop applications, such as transportation, coalescence, mixing, separation, evaporation, and extraction in a continuous operation. 详情请见文章内容[详细]
The behaviour of drops in an acoustic levitator is simulated numerically. The ultrasound field is directed along the axis of gravity, the motion of the drop is supposed to be axisymmetric. The flow inside the drop is assumed inviscid (since the time intervals considered are short) and incompressible. First, as a test case, we consider a stationary ultrasound wave. We observe, as in previous experimental and theoretical works, that stable drop equilibrium......[详细]
Spray drying is widely used in pharmaceutical manufacturing to produce microspheres from solutions or suspensions. The mechanical properties of the microspheres are reflected by the morphology formed in the drying process. In suspension drying, solids dissolved in the carrier liquid may form bridges between the suspended primary particles, producing a microsphere structure which is resistant against mechanical loads.
详情请见文章。[详细]
Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure.[详细]
The modelling of evaporation in which droplet geometry deviates from sphericity, i.e., oblate spheroid, when the droplet experiences high dynamic stresses or a high Weber number, is important in many applications. The validation of such theoretical models is often difficult to achieve experimentally. The acoustic levitation technique was used to investigate the evaporation of an oblate spheroid for different liquids......[详细]
The technique of acoustic levitation normally produces a standing wave and the potential well of the sound field can be used to trap small objects. Since no solid surfaces is involved it has been widely applied for the study of fluid physics, nucleation, bio/chemical processes, and various forms of soft matter. In this article, we survey the works on drop dynamics in acoustic levitation, focus on......[详细]
参与评论
登录后参与评论