资料库
EATON柱塞泵中载荷静压传动工作原理
-
本文由 东莞市巴菲特自动化设备有限公司 整理汇编
2018-10-06 10:00 633阅读次数
文档仅可预览首页内容,请下载后查看全文信息!
-
立即下载
广泛用于工程机械的大流量、高性能轴向柱塞式变量泵(简称PVH泵),已逐渐为广大用户所接受。本文简要介绍这种泵的结构与工作原理。 1构造与工作原理 1.1构造如图1所示。 1.2工作原理 如图2所示,当传动轴带动柱塞缸体旋转时,柱塞也一起转动。由于柱塞总是压紧在斜盘上,且斜盘相对刚体是倾斜的。因此,柱塞在随缸体旋转运动的同时,还要在柱塞缸体内的柱塞孔中往复直线运动。 当柱塞从缸体柱塞塞孔中向外拉出时,缸体柱塞孔中的密闭容积便增大,通过配流盘的进油口将液压油吸进缸体柱塞孔中;当柱塞被斜盘压入缸体柱塞孔时,缸体柱塞孔内的容积便减小,液压油在一定的压力下,经配油盘的出油口排出。如此循环,连续工作。PVH泵的控制系统能调节液压泵的工况,使排出液压油满足工作装置需要。 2控制系统 PVH泵的控制系统分为两种:压力补偿控制系统和载荷感应压力限定控制系统。 压力补偿控制系统是通过改变液压泵的流量,保持设定的工作压力来满足工作要求的一种控制方式。 载荷感应压力限定控制系统,是通过对工作载荷的压力变化进行感应,自动调节液压泵的工作状态,以满足特定系统工况的要求。 2.1压力补偿控制系统 如图3所示,工作时,载荷或系统压力总是作用于斜盘活塞上,斜盘活塞总保持液压泵的流量趋于Zda。同时,载荷或系统压力也为补偿阀腔提供压力,使补偿阀腔压力与补偿的弹簧里保持平衡。 一般情况下,载荷或系统压力升高,是因为液压泵流量大于载荷所需的流量,造成过量供油而引起的。所以,控制系统通过减少液压泵排量来降低压力。 当载荷或系统压力低于补偿弹簧设定压力时,补偿阀保持关闭,液压泵继续做Zda排量运转。当载荷或系统压力达到补偿阀设定压力时,补偿阀芯将克服弹簧力开始向右移动,液压油将按比例流进控制活塞腔。由于控制活塞面积比斜盘活塞面积大,所以控制活塞就推动斜盘向减少液压泵排量的方向移动。补偿控制系统继续按比例给控制活塞供油。并且调节液压泵的排量直到系统压力恒定。此时,液压泵仅提供载荷需要的液压油流量。 当系统压力低于补偿阀设定压力时,补偿阀芯回复原位,斜盘回复到使液压泵排量为Zda的位置。 2.2载荷感应和压力限制控制系统 如图4所示,此控制系统综合了压力限制和载荷感应控制双重特性。液压泵泵出的液压油流经各控制阀时,产生压差p=ppump-pload(压力降);载荷感应油路感应到压差p,并使载荷感应阀芯克服弹簧力ps向中间的关闭位置移动,此时:ps=p=ppump-pload (1)当系统保持设定的工作压力不变,而工作系统的流量发生变化时:当载荷需要液压油量增加时,主控制阀(流量与方向阀)的开度被调大,而阻尼效应应降低,压差p变小,即: 此时,作用在载荷感应弹簧腔的载荷压力pload与载荷感应弹簧力ps的合力大于左右在载荷感应阀芯右侧的液压泵出油口的油压力ppump,即使载荷感应阀芯向右移动,打开液压泵出油口通往控制活塞腔的通道,控制活塞腔的油压升高到液压泵出油口的压力。由于控制活塞的面积比斜盘活塞的面积大,控制活塞推动斜盘倾角大,液压泵流量增加,满足液压工作装置对流量的需求。随着流量的增加,流速的提高,主控制阀(流量与方向阀)两端的压差p又逐渐增加。当流量增加到一定程度时,压差p与载荷感应弹簧力相等。此时,在感应阀芯两端的作用力达到平衡,载荷感应阀芯回复到中间的关闭位置。控制活塞的压力不再提高,斜盘停止移动,液压泵的流量保持恒定而不再增加。 图4载荷感应与压力补偿控制原理 当(流量与方向阀)主控制阀的开度被调小时,主控制阀的阻尼效应增强,两端的压差p变大: 即 那么,作用在载荷感应阀芯右侧的液压泵出口压力ppump克服载荷感应弹簧力和载荷压力(pload+ps),推动载荷感应阀芯向左移动,打开控制活塞通往油箱的通道,控制活塞的压力油向油箱排放,控制活塞腔的压力降低。在斜盘活塞的推动下,斜盘倾角变小,液压泵流量降低。随着液压泵流量的降低,主控制阀两侧的压差p也在逐渐减小。当液压泵的流量降低到一定程度时,压差值与设定的载荷感应弹簧力相等。此时,载荷感应阀芯两端的作用力达到平衡,阀芯回复到中间的关闭位置,控制活塞的压力不再下降,斜盘不再移动,液压泵流量保持在与主控制阀开度相对应的新的恒定值不再减少。 (2)当系统流量与方向阀开度保持不变,载荷或工作压力变化时:若主控制阀(流量与方向阀)的开度调定,则因载荷的不稳定性,经常会发生工作压力的波动。此时的载荷感应和压力限制控制系统也有很好的特性。 当载荷突然变大时,载荷压力pload瞬间升高,作用在载荷感应阀芯两侧的作用力失去平衡,载荷压力与载荷感应弹簧的压力之和大于液压泵出油口压力,即:pload+ps>ppump,载荷感应阀芯向右移动,打开液压泵出油口通往控制活塞的通道。同时,载荷压力升高,很快通过油路到达液压泵的出油口,反应到压力补偿阀的压力控制阀芯的右侧。如果此载荷压力值超过压力补偿弹簧设定的Z高工作压力值,压力补偿弹簧将被压缩,压力限制阀芯向左移动,关闭载荷感应阀通往控制活塞的通道,使载荷感应阀暂时失去作用,而打开控制活塞通往油箱的通道,控制活塞卸压,斜盘倾角变小,液压泵排量降低,以达到保持Z高工作压力和保护液压泵不被超负荷的压力损伤的目的。压力峰值过后,出现压力较低的载荷值时,载荷感应阀芯两侧的压力失去平衡。由于此时的液压泵出口压力瞬间会高于载荷压力与载荷感应弹簧之和,载荷感应阀芯向左移动,接通油箱与通往控制活塞的通道仍然被压力补偿阀芯关闭着,所以载荷感应阀芯此时不起作用。在载荷压力低于压力补偿设定的液压泵工作压力时,压力补偿设定的液压泵工作压力时,压力补偿弹簧推动压力控制阀芯向右移动,接通液压泵出口到控制活塞的通道。液压泵为控制活塞供油,瞬间有少量液压油通过载荷感应阀流到油箱中。随着系统压力的升高,载荷感应阀很快便关闭通往油箱的通道。控制活塞在得到液压泵压力油后推动斜盘向增加排量的方向移动。液压泵排量增加,工作压力提高,直至达到设定的工作压力并保持主控制阀调定的流量。 (3)当系统流量为零时的液压泵待命状态:当逐渐关闭液压系统的主控制阀(流量与方向阀)时,液压泵会在保持系统工作压力情况下逐渐降低排量,其原理前面已经介绍。但当完全将主控制阀关闭时,载荷感应阀芯两侧的压差达到Zda,与液压泵出油口压力相等,即,而此时,载荷感应弹簧在液压泵出油口压力作用下,载荷感应阀芯向左移动,接通油箱通往控制活塞的通道。同时,压力补偿弹簧在主控制阀关闭瞬间所产生液压泵压力高峰值的作用下,被压缩,压力限制阀芯将压力感应阀通往控制活塞的通道关闭,控制活塞与油箱直接接通,控制活塞腔卸压,斜盘倾角变小,液压泵排量减少,压力也降低。液压泵降低到低于压力补偿阀设定的工作压力后,在压力补偿弹簧的作用下,压力限制阀芯向右移动,将控制活塞在压力补偿阀通往油箱的通道,控制活塞继续卸压,直到由载荷感应阀弹簧设定的压力值(ppump=3.5MPa)为止。此时,液压泵的工作状态为待命状态:压力接近3.5MPa,流量为0。 由此可见,采用此种控制系统的液压泵的工作范围,可以从Zda流量和Zda压力的工作状态,到零流量输出和极低压力的Z节省能量的待命状态,与载荷达到wan美的功率配合。一般来说,在关闭主控制阀后,液压泵的工作压力将达到系统设定的安全阀或卸荷阀压力,远远高于正常的工作压力。液压泵输出的液压油都经过卸荷阀回流到液压油箱,在卸荷阀的截流作用下产生大量的热量。这对液压油和液压元件的寿命非常不利,并且浪费大量的能量。本文介绍的液压控制系统,可以在载荷需要的情况下,从零功率到Zda功率运行。既减少能耗,又延长了液压油和液压元件以及液压泵和阀的使用寿命,有明显的经济效益和社会效益。广泛用于工程机械的大流量、高性能轴向柱塞式变量泵(简称PVH泵),已逐渐为广大用户所接受。本文简要介绍这种泵的结构与工作原理。
登录或新用户注册
请用手机微信扫描下方二维码
快速登录或注册新账号
微信扫码,手机电脑联动
更多资料
-
EATON柱塞泵中载荷静压传动工作原理
- 广泛用于工程机械的大流量、高性能轴向柱塞式变量泵(简称PVH泵),已逐渐为广大用户所接受。本文简要介绍这种泵的结构与工作原理。 1构造与工作原理 1.1构造如图1所示。 1.2工作原理 如图2所示,当传动轴带动柱塞缸体旋转时,柱塞也一起转动。由于柱塞总是压紧在斜盘上,且斜盘相对刚体是倾斜的。因此,柱塞在随缸体旋转运动的同时,还要在柱塞缸体内的柱塞孔中往复直线运动。 当柱塞从缸体柱塞塞孔中向外拉出时,缸体柱塞孔中的密闭容积便增大,通过配流盘的进油口将液压油吸进缸体柱塞孔中;当柱塞被斜盘压入缸体柱塞孔时,缸体柱塞孔内的容积便减小,液压油在一定的压力下,经配油盘的出油口排出。如此循环,连续工作。PVH泵的控制系统能调节液压泵的工况,使排出液压油满足工作装置需要。 2控制系统 PVH泵的控制系统分为两种:压力补偿控制系统和载荷感应压力限定控制系统。 压力补偿控制系统是通过改变液压泵的流量,保持设定的工作压力来满足工作要求的一种控制方式。 载荷感应压力限定控制系统,是通过对工作载荷的压力变化进行感应,自动调节液压泵的工作状态,以满足特定系统工况的要求。 2.1压力补偿控制系统 如图3所示,工作时,载荷或系统压力总是作用于斜盘活塞上,斜盘活塞总保持液压泵的流量趋于Zda。同时,载荷或系统压力也为补偿阀腔提供压力,使补偿阀腔压力与补偿的弹簧里保持平衡。 一般情况下,载荷或系统压力升高,是因为液压泵流量大于载荷所需的流量,造成过量供油而引起的。所以,控制系统通过减少液压泵排量来降低压力。 当载荷或系统压力低于补偿弹簧设定压力时,补偿阀保持关闭,液压泵继续做Zda排量运转。当载荷或系统压力达到补偿阀设定压力时,补偿阀芯将克服弹簧力开始向右移动,液压油将按比例流进控制活塞腔。由于控制活塞面积比斜盘活塞面积大,所以控制活塞就推动斜盘向减少液压泵排量的方向移动。补偿控制系统继续按比例给控制活塞供油。并且调节液压泵的排量直到系统压力恒定。此时,液压泵仅提供载荷需要的液压油流量。 当系统压力低于补偿阀设定压力时,补偿阀芯回复原位,斜盘回复到使液压泵排量为Zda的位置。 2.2载荷感应和压力限制控制系统 如图4所示,此控制系统综合了压力限制和载荷感应控制双重特性。液压泵泵出的液压油流经各控制阀时,产生压差p=ppump-pload(压力降);载荷感应油路感应到压差p,并使载荷感应阀芯克服弹簧力ps向中间的关闭位置移动,此时:ps=p=ppump-pload (1)当系统保持设定的工作压力不变,而工作系统的流量发生变化时:当载荷需要液压油量增加时,主控制阀(流量与方向阀)的开度被调大,而阻尼效应应降低,压差p变小,即: 此时,作用在载荷感应弹簧腔的载荷压力pload与载荷感应弹簧力ps的合力大于左右在载荷感应阀芯右侧的液压泵出油口的油压力ppump,即使载荷感应阀芯向右移动,打开液压泵出油口通往控制活塞腔的通道,控制活塞腔的油压升高到液压泵出油口的压力。由于控制活塞的面积比斜盘活塞的面积大,控制活塞推动斜盘倾角大,液压泵流量增加,满足液压工作装置对流量的需求。随着流量的增加,流速的提高,主控制阀(流量与方向阀)两端的压差p又逐渐增加。当流量增加到一定程度时,压差p与载荷感应弹簧力相等。此时,在感应阀芯两端的作用力达到平衡,载荷感应阀芯回复到中间的关闭位置。控制活塞的压力不再提高,斜盘停止移动,液压泵的流量保持恒定而不再增加。 图4载荷感应与压力补偿控制原理 当(流量与方向阀)主控制阀的开度被调小时,主控制阀的阻尼效应增强,两端的压差p变大: 即 那么,作用在载荷感应阀芯右侧的液压泵出口压力ppump克服载荷感应弹簧力和载荷压力(pload+ps),推动载荷感应阀芯向左移动,打开控制活塞通往油箱的通道,控制活塞的压力油向油箱排放,控制活塞腔的压力降低。在斜盘活塞的推动下,斜盘倾角变小,液压泵流量降低。随着液压泵流量的降低,主控制阀两侧的压差p也在逐渐减小。当液压泵的流量降低到一定程度时,压差值与设定的载荷感应弹簧力相等。此时,载荷感应阀芯两端的作用力达到平衡,阀芯回复到中间的关闭位置,控制活塞的压力不再下降,斜盘不再移动,液压泵流量保持在与主控制阀开度相对应的新的恒定值不再减少。 (2)当系统流量与方向阀开度保持不变,载荷或工作压力变化时:若主控制阀(流量与方向阀)的开度调定,则因载荷的不稳定性,经常会发生工作压力的波动。此时的载荷感应和压力限制控制系统也有很好的特性。 当载荷突然变大时,载荷压力pload瞬间升高,作用在载荷感应阀芯两侧的作用力失去平衡,载荷压力与载荷感应弹簧的压力之和大于液压泵出油口压力,即:pload+ps>ppump,载荷感应阀芯向右移动,打开液压泵出油口通往控制活塞的通道。同时,载荷压力升高,很快通过油路到达液压泵的出油口,反应到压力补偿阀的压力控制阀芯的右侧。如果此载荷压力值超过压力补偿弹簧设定的Z高工作压力值,压力补偿弹簧将被压缩,压力限制阀芯向左移动,关闭载荷感应阀通往控制活塞的通道,使载荷感应阀暂时失去作用,而打开控制活塞通往油箱的通道,控制活塞卸压,斜盘倾角变小,液压泵排量降低,以达到保持Z高工作压力和保护液压泵不被超负荷的压力损伤的目的。压力峰值过后,出现压力较低的载荷值时,载荷感应阀芯两侧的压力失去平衡。由于此时的液压泵出口压力瞬间会高于载荷压力与载荷感应弹簧之和,载荷感应阀芯向左移动,接通油箱与通往控制活塞的通道仍然被压力补偿阀芯关闭着,所以载荷感应阀芯此时不起作用。在载荷压力低于压力补偿设定的液压泵工作压力时,压力补偿设定的液压泵工作压力时,压力补偿弹簧推动压力控制阀芯向右移动,接通液压泵出口到控制活塞的通道。液压泵为控制活塞供油,瞬间有少量液压油通过载荷感应阀流到油箱中。随着系统压力的升高,载荷感应阀很快便关闭通往油箱的通道。控制活塞在得到液压泵压力油后推动斜盘向增加排量的方向移动。液压泵排量增加,工作压力提高,直至达到设定的工作压力并保持主控制阀调定的流量。 (3)当系统流量为零时的液压泵待命状态:当逐渐关闭液压系统的主控制阀(流量与方向阀)时,液压泵会在保持系统工作压力情况下逐渐降低排量,其原理前面已经介绍。但当完全将主控制阀关闭时,载荷感应阀芯两侧的压差达到Zda,与液压泵出油口压力相等,即,而此时,载荷感应弹簧在液压泵出油口压力作用下,载荷感应阀芯向左移动,接通油箱通往控制活塞的通道。同时,压力补偿弹簧在主控制阀关闭瞬间所产生液压泵压力高峰值的作用下,被压缩,压力限制阀芯将压力感应阀通往控制活塞的通道关闭,控制活塞与油箱直接接通,控制活塞腔卸压,斜盘倾角变小,液压泵排量减少,压力也降低。液压泵降低到低于压力补偿阀设定的工作压力后,在压力补偿弹簧的作用下,压力限制阀芯向右移动,将控制活塞在压力补偿阀通往油箱的通道,控制活塞继续卸压,直到由载荷感应阀弹簧设定的压力值(ppump=3.5MPa)为止。此时,液压泵的工作状态为待命状态:压力接近3.5MPa,流量为0。 由此可见,采用此种控制系统的液压泵的工作范围,可以从Zda流量和Zda压力的工作状态,到零流量输出和极低压力的Z节省能量的待命状态,与载荷达到wan美的功率配合。一般来说,在关闭主控制阀后,液压泵的工作压力将达到系统设定的安全阀或卸荷阀压力,远远高于正常的工作压力。液压泵输出的液压油都经过卸荷阀回流到液压油箱,在卸荷阀的截流作用下产生大量的热量。这对液压油和液压元件的寿命非常不利,并且浪费大量的能量。本文介绍的液压控制系统,可以在载荷需要的情况下,从零功率到Zda功率运行。既减少能耗,又延长了液压油和液压元件以及液压泵和阀的使用寿命,有明显的经济效益和社会效益。广泛用于工程机械的大流量、高性能轴向柱塞式变量泵(简称PVH泵),已逐渐为广大用户所接受。本文简要介绍这种泵的结构与工作原理。[详细]
-
2018-10-06 10:00
产品样册
-
Eaton 重载荷变量柱塞泵特点/优点介绍
- Eaton重载荷1系列闭式回路变量柱塞泵柱塞泵产品说明样本类型PDF样本编号型号代码Zda排量cm3/r[in3/rev]转速rpm@Zda排量额定压力bar[psi]基础泵重量kg[lbs]3354,3[3.32]4510415[6000]62,6[138]3963,8[3.89]4160415[6000]62,6[138]4675,4[4.60]4160415[6000]62,6[138]5489,1[5.44]3720415[6000]85,3[188]64105,5[6.44]3720415[6000]85,3[188]76124,8[7.62]2775415[6000]101,7[226]样本ModelCodeSupplement中文EnglishEnglish11-866-C11-86611-06-866su重载荷0&1系列Eaton泵,RE(远程电子)控制安装English04-06-0424-EN-1000Rev.10/2000静液变量泵1系列33-64型零件English06-608Rev.8/97静液变量泵1系列33-64型维修English07-606Rev.3/95重载荷静液IPOR后盖用于33,39,46,64&76型零件English06-622Rev.9/92重载荷静液泵标准补油泵,A-Pad&B-Pad补油泵零件English06-610Rev.8/99重载荷静液补油泵维修English07-607Rev.8/87重载荷静液泵,远程控制维修English07-417Rev.8/87重载荷静液泵,在混凝土泵中,故障诊断向导资料English03-406Rev.7/95重载荷静液泵,1系列静夜传动故障诊断安装资料English07-404Rev.7/95重载荷静液泵,中卫锁定开关单元安装资料English04-421Rev.4/97电比例(EP)控制用于重载荷0/1系列柱塞泵替换4-425,33,39,46,54,64,76型安装EnglishE-PUPI-TI004-ERev.09/02重载荷静液泵,恒速控制安装和工作资料English04-513Rev.6/95电比例(EP)控制用于重载荷0/1系列柱塞泵.替换01-708技术数据EnglishE-PUPI-MS003-ERev.0902电比例(EP)控制用于重载荷0/1系列柱塞泵33,39,46,54,64&76型零件和维修EnglishE-PUPI-TS002-ERev.09/02重载荷标准指南排量控制轴荷密封安装说明安装EnglishE-PUPI-TI007-E附加资料FixedPiston威格直轴Angle柱塞泵和柱塞马达MFB&MVB系列P(M)FB&P(M)VB系列零件Englishi-3230-sRev.4/96VariablePiston威格士变量工业用柱塞泵PVQ50-40设计号,PVQ200&PVQ700系列零件English501400/EN/0599/SRev.5/99PVQ63-40设计号,PVQ200&PVQ700系列零件English501401/EN/0599/SRev.5/99PVQ141-40设计号,PVQ200&PVQ700系列零件English501402/EN/0599/SRev.5/99威格士低噪音柱塞泵用于工业PVQ200系列,21,1至141cm3/r(1.29至8.64in3/r)排量230bar(3300psi)Z高压力零件English501400/EN/0598/ARev.5/98中载荷伊顿中载荷柱塞泵压力或压力流量补偿调节指导资料English02-604Rev.5/97伊顿中载荷变量柱塞泵70142,70144&70145型,01,02设计号带阀板零件English06-632Rev.8/95伊顿中载荷变量柱塞泵70142,70144&70145型,01,02设计号带阀板维修English07-623Rev.7/95伊顿中载荷手动变量柱塞泵70342&70344型零件English06-626Rev.2/93伊顿中载荷手动变量柱塞泵型号70342,70344&78341维修English07-620Rev.1/96重载荷威格士重载荷柱塞泵,80USgpmPVD80C**-**-11-C*******-13零件EnglishM-2228-SRev.12/92威格士重载荷柱塞泵PVE27*-E2-21-C**-20零件EnglishM-2241-SRev.4/85威格士重载荷变量直轴柱塞泵,27USgpmPVE27-*-**(M)(D)-22-C25(V)-21零件EnglishM-2246-SRev.12/86威格士重载荷柱塞泵,62USgpmPVE62*-3-10-C**-13零件EnglishM-2245-SRev.4/86在开环柱塞泵中测试程序技术资料和泵型号PVH57C-RF-2S-11-C25V-31技术数据English03-06-0002-EN-0601重载荷泵和马达的尺寸向导技术资料English03-409产品更新:可以在伊顿售后服务零件市场通过替换带有伊顿和威格士品牌的重新生产的零件,对在产品更新程序内的产品完成更新...产品资料EnglishM-SRSR-MC001-E[详细]
-
2018-10-06 10:00
产品样册
-
Eaton变量柱塞泵中文介绍
- Eaton伊顿闭式回路变量柱塞泵的压力油经泵体、泵壳变量壳体中的通油孔通过单向阀进入变量壳体的下腔,当拉杆向下运动时,推动伺服活塞向下移动,伺服阀的上阀口打开,变量壳体下腔的压力油经变量活塞中的通油孔进入变量壳体上腔,由于上腔面积大于下腔,液压力推动活塞向下运动,带动销轴使变量头绕钢球ZX旋转,改变变量头的倾斜角(增大),柱塞泵的流量随之增大。反之拉杆向上运动,变量头的倾斜角向相反方向变化,泵的流量也随之变化。当倾斜角度变至零以后,则变量头向负偏角方向变化,液流产生换向,泵的进出油口变换。Eaton伊顿柱塞泵漏油主要有以下原因:(1)主轴油封损坏或轴有缺陷、划痕;(2)内部泄漏过大,造成油封处压力增大,而将油封损伤或冲出;(3)泄油管过细过长,使密封处漏油;(4)泵的外接油管松动,管接头损伤,密封垫老化或产生裂纹;(5)变量调节机构螺栓松动,密封破损;(6)铸铁泵壳有砂眼或焊接不良。VICKERS(变量泵.叶片泵.)、广泛适用注塑机/压铸机/油压机/船舶机械/工程机械等…..供应与维修.EATON-VICKERS伊顿威格士示例型号:PFB柱塞泵:PFB5、PFB10、PFB20、PFB45,PFB5-FRY-22-S124;轴向柱塞泵:PVB5.PVB6、PVB10PVB15、PVB20/PVB29、PVB45、PVB90;PVB20-F-MRSFXN-10-CM-CVP-C-G-L-11-GE1;PV/PF柱塞泵:PF066、PF090、PF130、PF180、PF250、PV066、PV090、PV130、PV180、PV250;PV060M2R1A1A1N1V20EU17**10PV250、PV360、PV500、PV750、PF250、PF360、PF500、PF750、TPV130、TPV180、TPV250、TPV360、TPV500、TPF130、TPF180、TPF250、TPF360、TPF500;PV250M7R1N1R1S1V30EU11DP11;PVH柱塞泵:PVH57QIC,PVH63QIC,PVH74QIC,PVH81QIC,PVH98QIC,PVH106QIC,PVH131QICPVH141QICPVH074R13AA10B252000001AF1AB010A及PVM018/020、PVM045/050、PVM057/063、PVM131/141、PVQ10、PVQ13、PVQ16、PVQ20、PVQ25、PVQ32、PVQ40、PVQ45、PVQ63......伊顿VICKERS柱塞泵2系列泵提供5种必备的充液泵排量供选择。充液泵设计成有较大的贯通扭矩,用于双联泵和多马达用途。这些充液泵包括大的标准吸油口和测压/控制压力口。充液泵压力侧过滤也有货。伊顿VICKERS变量柱塞泵控制非常适用于下列用途:需要远程传动控制的场合控制钢丝绳或连杆不适用的场合不使用电气控制的场合伊顿液压远程泵控制适用于:所有伊顿2系列变量泵(型号33-64)其他的伊顿控制选项,如回程控制,微动控制和压力过载大多数市场上可供货的液压指令台液压远程泵控制是一个三位四通闭式中位(弹簧对中)液压驱动的伺服控制。这种控制像手动排量控制一样使用反馈连杆直接连接斜盘.伊顿VICKERS变量柱塞泵特点充液泵产生低压油流量,完成以下的功能:1.保持闭式回路充满油液。2.提供控制压力给泵的排量控制伺服阀,便于控制传动装置的输出速度。3.从油箱提供冷却、清洁的油液,保持传动泵和马达的良好润滑和冷却。4.给柱塞泵和柱塞马达的柱塞提供可靠的增压压力。[详细]
-
2018-10-06 10:00
产品样册
-
下载ATOS柱塞泵的工作原理
- 下载意大利阿托斯ATOS柱塞泵的工作原理柱塞泵是液压系统的一个重要装置。它依靠柱塞在缸体中往复运动,使密封工作容腔的容积发生变化来实现吸油、压油。柱塞泵具有额定压力高、结构紧凑、效率高和流量调节方便等优点,被广泛应用于高压、大流量和流量需要调节的场合,诸如液压机、工程机械和船舶中。[详细]
-
2018-09-04 10:01
产品样册
-
Rexroth柱塞泵工作原理资料下载
- Rexroth柱塞泵是液压系统的一个重要装置。它依靠柱塞在缸体中往复运动,使密封工作容腔的容积发生变化来实现吸油、压油。Rexroth柱塞泵具有额定压力高、结构紧凑、效率高和流量调节方便等优点,被广泛应用于高压、大流量和流量需要调节的场合,诸如液压机、工程机械和船舶中。Rexroth柱塞泵柱塞往复运动总行程L是不变的,由凸轮的升程决定。柱塞每循环的供油量大小取决于供油行程,供油行程不受凸轮轴控制是可变的。供油开始时刻不随供油行程的变化而变化。转动柱塞可改变供油终了时刻,从而改变供油量。Rexroth柱塞泵工作时,在喷油泵凸轮轴上的凸轮与柱塞弹簧的作用下,迫使柱塞作上、下往复运动,从而完成泵油任务,泵油过程可分为以下三个阶段。进油过程当凸轮的凸起部分转过去后,在弹簧力的作用下,柱塞向下运动,柱塞上部空间(称为泵油室)产生真空度,当柱塞上端面把柱塞套上的进油孔打开后,充满在油泵上体油道内的柴油经油孔进入泵油室,柱塞运动到下止点,进油结束。供油过程当凸轮轴转到凸轮的凸起部分顶起滚轮体时,柱塞弹簧被压缩,柱塞向上运动,燃油受压,一部分燃油经油孔流回喷油泵上体油腔。当柱塞顶面遮住套筒上进油孔的上缘时,由于柱塞和套筒的配合间隙很小(0.0015-0.0025mm)使柱塞顶部的泵油室成为一个密封油腔,柱塞继续上升,泵油室内的油压迅速升高,泵油压力>出油阀弹簧力+高压油管剩余压力时,推开出油阀,高压柴油经出油阀进入高压油管,通过喷油器喷入燃烧室。回油过程柱塞向上供油,当上行到柱塞上的斜槽(停供边)与套筒上的回油孔相通时,泵油室低压油路便与柱塞头部的中孔和径向孔及斜槽沟通,油压骤然下降,出油阀在弹簧力的作用下迅速关闭,停止供油。此后柱塞还要上行,当凸轮的凸起部分转过去后,在弹簧的作用下,柱塞又下行。此时便开始了下一个循环。Rexroth柱塞泵以一个柱塞为原理介绍,一个Rexroth柱塞泵上有两个单向阀,并且方向相反,柱塞向一个方向运动时缸内出现负压,这时一个单向阀打开液体被吸入缸内,柱塞向另一个方向运动时,将液体压缩后另一个单向阀被打开,被吸入缸内的液体被排出。这种工作方式连续运动后就形成了连续供油。[详细]
-
2018-10-16 10:00
产品样册
-
意大利迪普玛柱塞泵工作原理
- 主要特点采用双柱塞结构,压力脉动小,宝石球寿命长;采用进口宝石柱塞和宝石球,确保流量极ng确通过RS232接口与电脑通讯,可直接由电脑进行控制;接触介质材料耐有机溶剂腐蚀;内建过压保护和流量校正系统;大屏幕液晶显示;精心设计的排气装置有效除去输送液体中的气泡。流量与压力设定可记忆可与PLC实现通讯(定制)软件功能实时显示当前压力、设定压力、设定流量;实时曲线显示泵工作压力可按两种方式设定流量和压力,快捷实用;具有定时功能,方便设定泵的工作时间;可保存当前工作压力,便于查看;可打印当前压力等重要参数。平流泵(柱塞泵)产品广泛应用于石油勘探开发评价实验、石油化工的催化反应、聚合反应、食品、制药、液相色谱分析、超临界萃取、分离、原子能科学、环境科学、工艺设备、实验设备以及各种液体的微量送液等方面。TBP系列平流泵(柱塞泵)的各项性能指标能够满足油田流体渗流流变特性研究的要求,填补了我国在相关实验技术领域装备制造上的空白,达到同类仪器的国际先进水平。机械原理概述柱塞泵柱塞往复运动总行程L是不变的,由凸轮的升程决定。柱塞每循环的供油量大小取决于供油行程,供油行程不受凸轮轴控制是可变的。供油开始时刻不随供油行程的变化而变化。转动柱塞可改变供油终了时刻,从而改变供油量。柱塞泵工作时,在喷油泵凸轮轴上的凸轮与柱塞弹簧的作用下,迫使柱塞作上、下往复运动,从而完成泵油任务,泵油过程可分为以下两个阶段。进油过程当凸轮的凸起部分转过去后,在弹簧力的作用下,柱塞向下运动,柱塞上部空间(称为泵油室)产生真空度,当柱塞上端面把柱塞套上的进油孔打开后,充满在油泵上体油道内的柴油经油孔进入泵油室,柱塞运动到下止点,进油结束回油过程柱塞向上供油,当上行到柱塞上的斜槽(停供边)与套筒上的回油孔相通时,泵油室低压油路便与柱塞头部的中孔和径向孔及斜槽沟通,油压骤然下降,出油阀在弹簧力的作用下迅速关闭,停止供油。此后柱塞还要上行,当凸轮的凸起部分转过去后,在弹簧的作用下,柱塞又下行。此时便开始了下一个循环。柱塞泵以一个柱塞为原理介绍,一个柱塞泵上有两个单向阀,并且方向相反,柱塞向一个方向运动时缸内出现负压,这时一个单向阀打开液体被吸入缸内,柱塞向另一个方向运动时,将液体压缩后另一个单向阀被打开,被吸入缸内的液体被排出。这种工作方式连续运动后就形成了连续供油。机械使用柱塞泵缸体镶装铜套的,可以采用更换铜套的方法安装。首先把一组柱塞杆外径修整到统一尺寸,再用1000#以上的砂纸抛光外径。缸体安装铜套的三种方法:(a)缸体加温热装或铜套低温冷冻挤压,过盈装配;(b)采有乐泰胶粘着装配,这咱方法要求铜外套外径表面有沟槽;(c)缸孔攻丝,铜套外径加工螺纹,涂乐泰胶后,旋入装配。熔烧结合方式的缸体与铜套,安装方法如下:(a)采用研磨棒,手工或机械方法研磨修复缸孔;(b)采用坐标镗床,重新镗缸体孔;(c)采用铰刀修复缸体孔。(3)采用“表面工程技术”,方法如下:(a)电镀技术:在柱塞表面镀一层硬铬;(b)电刷镀技术:在柱塞表面刷镀耐磨材料;(c)热喷涂或电弧喷涂或电喷涂:喷涂高碳马氏体耐磨材料;(d)激光熔敷:在柱塞表面熔敷高硬度耐磨合金粉末。(4)缸体孔无铜套的缸体材料大都是球墨铸铁的,在缸体内壁上制备非晶态薄膜或涂层。因为缸体孔内壁有了这种特殊物质,所以才能组成硬硬配对的磨擦副。意大利迪普玛柱塞泵工作原理机械维护采用补油泵供油的柱塞泵,使用3000h后,操作人员每日需对柱塞泵检查1-2次,检查液压泵运转声响是否正常。如发现液压缸速度下降或闷车时,就应该对补油泵解体检查,检查叶轮边沿是否有刮伤现象,内齿轮泵间隙是否过大。对于自吸油型柱塞泵,液压油箱内的油液不得低于油标下限,要保持足够数量的液压油。液压油的清洁度越高,液压泵的使用寿命越长。柱塞泵Z重要的部件是轴承,如果轴承出现游隙,则不能保证液压泵内部三对磨擦副的正常间隙,同时也会破坏各磨擦副的静液压支承油膜厚度,降低柱塞泵轴承的使用寿命。据液压泵制造厂提供的资料,轴承的平均使用寿命为10000h,超过此值就需要更换新口。拆卸下来的轴承,没有专业检测仪器是无法检测出轴承的游隙的,只能采用目测,如发现滚柱表面有划痕或变色,就必须更换。在更换轴承时,应注意原轴承的英文字母和型号,柱塞泵轴承大都采用大载荷容量轴承,**购买原厂家,原规格的产品,如果更换另一种品牌,应请教对轴承有经验的人员查表对换,目的是保持轴承的精度等级和载荷容量。柱塞泵使用寿命的长短,与平时的维护保养,液压油的数量和质量,油液清洁度等有关。避免油液中的颗粒对柱塞泵磨擦副造成磨损等,也是延长柱塞泵寿命的有效途径。在维修中更换零件应尽量使用原厂生产的零件,这些零件有时比其它仿造的零件价格要贵,但质量及稳定性要好,如果购买售价便宜的仿造零件,短期内似乎是节省了费用,但由此出带来了隐患,也可能对柱塞泵的使用造成更大的危害。配流盘有平面配流和球面配流两种形式。球面配流的磨擦副,在缸体配流面划痕比较浅时,通过研磨手段修复;缸体配流面沟槽较深时,应先采用“表面工程技术”手段填平沟槽后,再进行研磨,不可盲目研磨,,以防铜层变薄或漏油出钢基。柱塞泵也可用变频器节约电能,上海正艺的工程师指出:柱塞泵在实际生产过程中,通常运行的情况下都是以压力或流量来调节工作状态。当实际压力大于需要压力时,都是通过溢流阀来调节,使其工作压力保持稳定让溢流阀施放超出部分。而电机一直处于全速运行反复动作,功耗不变。当采用溢流来调节压力和流量时,有部分的余量溢流回原系统,从而造成柱塞泵存在无用功率,工作效率低,若使用创杰节能变频器后,溢流阀可定它封闭,通过节能变频器本身自动调整工作压力,保持工作压力的稳定,自动追踪设备的压力。实现自动化控制,从而节省能耗。这种调节方式Zda优点就是能降低柱塞泵的运行能耗,节电效果可达30%以上。主要特点及功能1、节电效果达30-70%。2、电机软启动,减少对机械的冲击。3、无高压节流能量损失。4、具有欠压、过压、过载、短路、缺相等自动保护。5、代替原来系统。降低采购产品成本(新设备购买)。6、减少机械的维修成本。7、操作简单、可实现远程控制。[详细]
-
2018-11-10 10:00
产品样册
-
Rexroth力士乐柱塞泵工作原理与说明
- Rexroth力士乐柱塞泵工作原理与说明Rexroth柱塞泵是靠柱塞在缸体中作往复运动造成密封容积的变化来实现吸油与压油的液压泵,与齿轮泵和叶片泵相比,这种泵有许多优点。首先,构成密封容积的零件为圆柱形的柱塞和缸孔,加工方便,可得到较高的配合精度,密封性能好,在高压工作仍有较高的容积效率;第二,只需改变柱塞的工作行程就能改变流量,易于实现变量;第三,柱塞泵中的主要零件均受压应力作用,材料强度性能可得到充分利用。由于柱塞泵压力高,结构紧凑,效率高,流量调节方便,故在需要高压、大流量、大功率的系统中和流量需要调节的场合,如龙门刨床、拉床、液压机、工程机械、矿山冶金机械、船舶上得到广泛的应用。柱塞泵按柱塞的排列和运动方向不同,可分为径向柱塞泵和轴向柱塞泵两大类Rexroth柱塞泵工作原理与说明柱塞泵原理一、径向柱塞泵特征:各柱塞排列在传动轴半径方向,即柱塞ZX线垂直于传动轴ZX线1.径向柱塞泵的工作原理结构:定子、转子、柱塞、配油轴等↓↓偏心固定工作原理:V密形成同上上半周,吸油V密变化转子顺转<下半周,压油排量V=πd22ez/42)流量qt=Vn=πd22ezn/4q=Vnηpv=πd22eznηpv/4变量原理:径向柱塞泵的排量和流量改变偏心距的大小和方向,即可以改变输出油液的大小和方向。阀配流径向柱塞泵的工作原理径向柱塞泵的特点:流量大,压力高,便于作成多排柱塞的形式,工作可靠但径向尺寸大,自吸能力差,配流轴径向力不平衡,易磨损,间隙不能补偿,故限制了转速和压力的提高。1.轴向柱塞泵的工作原理轴向柱塞泵是将多个柱塞配置在一个共同缸体的圆周上,并使柱塞ZX线和缸体ZX线平行的一种泵。轴向柱塞泵有两种形式,直轴式(斜盘式)和斜轴式(摆缸式),二、轴向柱塞泵特征:柱塞轴线平行或倾斜于缸体的轴线1.轴向柱塞泵的工作原理1)斜盘式轴向柱塞泵组成:配油盘、柱塞、缸体、倾斜盘等工作原理:V密形成柱塞和缸体配合而成右半周,V密增大,吸油V密变化,缸体逆转<左半周,V密减小,压油吸压油口隔开配油盘上的封油区及缸体底部的通油孔2)斜轴式轴向柱塞泵特点:传动轴轴线与缸体轴线倾斜一γ角。组成:工作原理:V密形成同上右半周,吸油V密变化传动轴逆转<左半周,压油吸压油口隔开同上2.轴向柱塞泵的排量和流量1)排量若柱塞数为z,柱塞直径为d,柱塞孔的分布圆直径为D,斜盘倾角为γ,则柱塞的行程为:h=Dtanγ,故缸体转一转,泵的排量为:V=Zhπd/4=πd2ZD(tanγ)/42)流量理论流量:qT=Vn=πd2D(tanγ)z/4实际流量:q=qTηpv=πd2D(tanγ)zηpv/4结论:(1)qT=f(几何参数、n、γ)(2)n=c大小变化,流量大小变化γ<方向变化,输油方向变化变量原理:∵γ=0q=0大小变化,流量大小变化γ<方向变化,输油方向变化∴轴向柱塞泵可作为双向变量泵瞬时流量:柱塞的轴向位移:s=a’b’=oa’-ob’=Dtanγ/2Dcosωttanγ/2=D(1-cosωt)tanγ/2柱塞的瞬时移动速度:u=ds/dt=Dωtanγsinωt/2单个柱塞的瞬时流量为:q‘=πd2u/4=πd2Dωtanγsinωt/8∵单个柱塞的瞬时流量按正弓玄规律变化∴整个泵的瞬时流量也按正弓玄规律变化故瞬时流量是脉动的,其脉动情况用脉动率δ来表示,一般:z=奇数,δ小z=偶数,δ大常取z=7或z=93.轴向柱塞泵的结构(1)斜盘式轴向柱塞泵1)非通轴式轴向柱塞泵CY141轴向柱塞泵主体部分:使泵具有自吸性能ZX弹簧<提高容积效率ZX弹簧缸体端面间隙的自动补偿<缸体底部通油孔p**除ZX弹簧使缸体紧压配流盘外,柱塞孔底部的液压力也使缸体紧贴配流盘,补偿端面间隙,提高了容积效率A滑靴和斜盘球形头部和斜盘接触为点接触,接触应力大,易磨损。柱塞头部结构<滑靴结构和斜盘接触为面接触,大大降低了磨损。B柱塞和缸体②CY141轴向柱塞泵变量机构手动*转动手轮控制斜盘,改变倾角即可变量机构<自动2)通轴式轴向柱塞泵非通轴结构(半轴):受力状态不佳,寿命短,噪声大,成本高。区别<通轴结构:主轴采用两端支承,受力情况变好;在泵的外端安装一小型辅助泵,简化油路。(2)斜轴式轴向柱塞泵特点:传动轴轴线与缸体轴线倾斜一γ角。工作原理:V密形成同上右半周,吸油V密变化传动轴逆转<左半周,压油吸压油口隔开同上)2.轴向柱塞泵的排量和流量计算:轴向柱塞泵的实际数输出流量为其余符号意义同前。实际上,由于柱塞在缸体孔中运动的速度不是恒速的,因而输出流量是有脉动的,当柱塞数为奇数时,脉动较小,且柱塞数多脉动也较小,因而一般常用的柱塞泵的柱塞个数为7、9或11。叶片泵的结构较齿轮泵复杂,但其工作压力较高,且流量脉动小,工作平稳,噪声较小,寿命较长。所以它被广泛应用于机械制造中的专用机床、自动线等中低液压系统中,但其结构复杂,吸油特性不太好,对油液的污染也比较敏感。根据各密封工作容积在转子旋转一周吸、排油液次数的不同,叶片泵分为两类,即完成一次吸、排油液的单作用叶片泵和完成两次吸、排油液的双作用叶片泵,单作用叶片泵多为变量泵,工作压力Zda为7.0Mpa,双作用叶片泵均为定量泵,一般Zda工作压力亦为7.0Mpa,结构经改进的高压叶片泵Zda的工作压力可达16.0~21.0Mpa。直轴式轴向柱塞泵的工作原理,这种泵主体由缸体1、配油盘2、柱塞3和斜盘4组成。柱塞沿圆周均匀分布在缸体内。斜盘轴线与缸体轴线倾斜一角度,柱塞靠机械装置或在低压油作用下压紧在斜盘上(图中为弹簧),配油盘2和斜盘4固定不转,当原动机通过传动轴使缸体转动时,由于斜盘的作用,迫使柱塞在缸体内作往复运动,并通过配油盘的配油窗口进行吸油和压油。回转方向,当缸体转角在π~2π范围内,柱塞向外伸出,柱塞底部缸孔的密封工作容积增大,通过配油盘的吸油窗口吸油;在0~π范围内,柱塞被斜盘推入缸体,使缸孔容积减小,通过配油盘的压油窗口压油。缸体每转一周,每个柱塞各完成吸、压油一次,如改变斜盘倾角,就能改变柱塞行程的长度,即改变液压泵的排量,改变斜盘倾角方向,就能改变吸油和压油的方向,即成为双向变量泵。Rexroth柱塞泵工作原理与说明[详细]
-
2018-10-16 10:00
产品样册
-
进口德国REXROTH力士乐柱塞泵的工作原理
- 进口德国REXROTH力士乐柱塞泵的工作原理力士乐柱塞泵为博世-力士乐BoschRexroth旗下品牌,REXROTH不仅是世界前100强公司,也是世界高科技企业之一,50多年来,BoschRexroth集团及BoschRexroth公司的业务部门致力开发专业型液压传动领域高科技产品,产品和品牌已享誉。力士乐Rexroth柱塞泵的优点1.参数高:额定压力高,转速高,力士乐油泵的驱动功率大2.效率高,容积效率为95%左右,总效率为90%左右3.寿命长4.变量方便,形式多5.单位功率的重量轻6.力士乐柱塞泵主要零件均受压应力,材料强度性能可得以充分利用根据倾斜元件的不同,有斜盘式和斜轴式两种。斜盘式是斜盘相对回转的缸体有一倾斜角度,而引起柱塞在泵缸中往复运动。传动轴轴线和缸体轴线是一致的。这种结构较简单,转速较高,但工作条件要求高,柱塞端部与斜盘的接触部往往是薄弱环节。斜轴式的斜盘轴线与传动轴轴线是一致的。它是由于柱塞缸体相对传动轴倾斜一角度而使柱塞作往复运动。流量调节依靠摆动柱塞缸体的角度来实现,故有的又称摆缸式。它与斜盘式相比,工作可靠,流量大,但结构复杂。力士乐轴向柱塞泵与径向柱塞泵比较,排出压力高,它一般可在20~50MPa范围内工作,效率也高,径向尺寸小、结构紧凑、体积小、重量轻。但结构较径向柱塞泵复杂,加工制造要求高,价格较贵。轴向柱塞泵一般用于机床、冶金、锻压、矿山及起重机械的液压传动系统中,特别广泛地应用于大功率的液压传动系统中。为了提GX率,在应轴向柱塞泵一般都由缸体、配油盘、柱塞和斜盘等主要零件组成。缸体内有多个柱塞,柱塞是轴向排列的,即柱塞的ZX线平行于传动轴的轴线,因此称它为轴向柱塞泵。但它又不同于往复式柱塞泵,因为它的柱塞不仅在泵缸内做往复运动,而且柱塞和泵缸与斜盘相对有旋转运动。柱塞以一球形端头与斜盘接触。在配油盘上有高低压月形沟槽,它们彼此由隔墙隔开,保证一定的密封性,它们分别与泵的进油口和出油口连通。斜盘的轴线与缸体轴线之间有一倾斜角度。力士乐REXROTH轴向柱塞泵的工作原理所示,当电动机带动传动轴旋转时,泵缸与柱塞一同旋转,柱塞头永远保持与斜盘接触,因斜盘与缸体成一角度,因此缸体旋转时,柱塞就在泵缸中做往复运动。以图l40的下一柱塞为例,它从0°转到180°,即转到上面柱塞的位置,柱塞缸容积逐渐增大,因此液体经配油盘的吸油口a吸人油缸;而该柱塞从180°转到360°时,柱塞缸容积逐渐减小,因此油缸内液体经配油盘的出口排出液体。只要传动轴不断旋转,泵便不断地工作。改变倾斜元件的角度,就可以改变柱塞在泵缸内的行程长度,即可改变泵的流量。倾斜角度固定的称为定量泵,倾斜角度可以改变的便称为变量泵。我们公司代理以下优势品牌:1.品牌:、德国力士乐REXROTH、德国费斯托FESTO、德国宝德BURKERT、德国贺德克HYDAC、德国倍加福P+F、德国图尔克TURCK、德国施克SICK、德国易福门IFM、德国GSR、德国PILZ、德国巴鲁夫BALLUFF、EPRO.,德国西门子。德国哈威HAWE等2.美国阿斯卡ASCO、美国派克PARKER、美国威格士VICKERS、、美国MAC、美国纽曼蒂克NUMATICS.3.意大利ATOS、意大利杰弗伦GEFRAN、英国海隆诺冠、法国高诺斯等.4.日本CKD\日本SMC、日本丰兴、日本大金、日本不二越、日本黑田精工、日本太阳铁工、东京美我公司在德国及美国都有注册公司,直接与国外厂家合作,价格和货期都有非常好的优势,产品保证原装。进口德国REXROTH力士乐柱塞泵的工作原理[详细]
-
2018-10-16 10:00
产品样册
-
PVPC型轴向柱塞泵工作原理及常见故障处理
- 柱塞泵是液压系统的一个重要装置。它依靠柱塞在缸体中往复运动,使密封工作容腔的容积发生变化来实现吸油、压油。柱塞泵具有额定压力高、结构紧凑、效率高和流量调节方便等优点,被广泛应用于高压、大流量和流量需要调节的场合,诸如液压机、工程机械和船舶中。 柱塞泵是往复泵的一种,属于体积泵,其柱塞泵轴的偏心转动驱动,往复运动,其吸入和排出阀都是单向阀。当柱塞外拉时,工作室内压力降低,出口阀关闭,低于进口压力时,进口阀打开,液体进入;柱塞内推时,工作室压力升高,进口阀关闭,高于出口压力时,出口阀打开,液体排出。当传动轴带动缸体旋转时,斜盘将柱塞从缸体中拉出或推回,完成吸排油过程。柱塞与缸孔组成的工作容腔中的油液通过配油盘分别与泵的吸、排油腔相通。变量机构用来改变斜盘的倾角,通过调节斜盘的倾角可改变泵的排量。1.液压泵输出流量不足或不输出油液(1)吸入量不足。原因是吸油管路上的阻力过大或补油量不足。如泵的转速过大,油箱中液面过低,进油管漏气,滤油器堵塞等。(2)泄漏量过大。原因是泵的间隙过大,密封不良造成。如配油盘被金属碎片、铁屑等划伤,端面漏油;变量机构中的单向阀密封面配合不好,泵体和配油盘的支承面有砂眼或研痕等。可以通过检查泵体内液压油中混杂的异物判别泵被损坏的部位。(3)倾斜盘倾角太小,泵的排量少,这需要调节变量活塞,增加斜盘倾角。2.中位时排油量不为零变量式轴向柱塞泵的斜盘倾角为零时称为中位,此时泵的输出流量应为零。但有时会出现中位偏离调整机构中点的现象,在中点时仍有流量输出。其原因是控制器的位置偏离、松动或损伤,需要重新调零、紧固或更换。泵的角度维持力不够、倾斜角耳轴磨损也会产生这种现象。3.输出流量波动输出流量波动与很多因素有关。对变量泵可以认为是变量机构的控制不佳造成,如异物进入变量机构,在控制活塞上划出阶痕、磨痕、伤痕等,造成控制活塞运动不稳定。由于放大器能量不足或零件损坏、含有弹簧的控制活塞的阻尼器效能差,都会造成控制活塞运动不稳定。流量不稳定又往往伴随着压力波动。这类故障一般要拆开液压泵,更换受损零部件,加大阻尼,提高弹簧刚度和控制压力等。4.输出压力异常泵的输出压力是由负载决定的,与输入转矩近似成正比。输出压力异常有两种故障。5.振动和噪声振动和噪声是同时出现的。它们不仅对机器的操作者造成危害,也对环境造成污染。柱塞泵漏油主要有以下原因:(1)主轴油封损坏或轴有缺陷、划痕;(2)内部泄漏过大,造成油封处压力增大,而将油封损伤或冲出;(3)泄油管过细过长,使密封处漏油;(4)泵的外接油管松动,管接头损伤,密封垫老化或产生裂纹;(5)变量调节机构螺栓松动,密封破损;[详细]
-
2018-11-22 10:00
产品样册
-
力士乐柱塞泵构造原理
- 力士乐柱塞泵根据倾斜元件的不同,有斜盘式和斜轴式两种。斜盘式是斜盘相对回转的缸体有一倾斜角度,而引起柱塞在泵缸中往复运动。传动轴轴线和缸体轴线是一致的。这种结构较简单,转速较高,但工作条件要求高,柱塞端部与斜盘的接触部往往是薄弱环节。斜轴式的斜盘轴线与传动轴轴线是一致的。它是由于柱塞缸体相对传动轴倾斜一角度而使柱塞作往复运动。流量调节依靠摆动柱塞缸体的角度来实现,故有的又称摆缸式。它与斜盘式相比,工作可靠,流量大,但结构复杂。轴向柱塞泵与径向柱塞泵比较,排出压力高,它一般可在20~50MPa范围内工作,效率也高,径向尺寸小、结构紧凑、体积小、重量轻。但结构较径向柱塞泵复杂,加工制造要求高,价格较贵轴向柱塞泵一般用于机床、冶金、锻压、矿山及起重机械的液压传动系统中,特别广泛地应用于大功率的液压传动系统中。为了提GX率,在应轴向柱塞泵一般都由缸体、配油盘、柱塞和斜盘等主要零件组成。缸体内有多个柱塞,柱塞是轴向排列的,即柱塞的ZX线平行于传动轴的轴线,因此称它为轴向柱塞泵。但它又不同于往复式柱塞泵,因为它的柱塞不仅在泵缸内做往复运动,而且柱塞和泵缸与斜盘相对有旋转运动。柱塞以一球形端头与斜盘接触。在配油盘上有高低压月形沟槽,它们彼此由隔墙隔开,保证一定的密封性,它们分别与泵的进油口和出油口连通。斜盘的轴线与缸体轴线之间有一倾斜角度。上海维特锐实业发展有限公司现货供应德国力士乐柱塞泵系列产品,如需详细了解请点击:德国力士乐柱塞泵[详细]
-
2018-12-04 10:00
产品样册
-
压缩机工作原理
- 压缩机工作原理[详细]
-
2013-08-13 00:00
安装说明
-
射频导纳工作原理
- 射频导纳工作原理[详细]
-
2013-04-16 00:00
专利
-
真空泵工作原理
- 真空泵工作原理[详细]
-
2012-04-23 00:00
报价单
-
淋雨试验箱工作原理
- 淋雨试验箱工作原理[详细]
-
2012-07-14 00:00
产品样册
-
索氏抽提器工作原理
- 索氏抽提器工作原理[详细]
-
2013-09-17 00:00
应用文章
-
离心机工作原理
- 离心机工作原理[详细]
-
2009-06-30 00:00
课件
-
反渗透膜工作原理
- 反渗透膜工作原理[详细]
-
2009-07-27 00:00
实验操作
-
层析冷柜工作原理
- 层析冷柜工作原理[详细]
-
2015-08-19 00:00
产品样册
-
振动盘工作原理
- 振动盘工作原理[详细]
-
2011-03-02 00:00
选购指南
-
光栅工作原理
- 光栅工作原理[详细]
-
2016-01-06 00:00
期刊论文
Copyright 2004-2026 yiqi.com All Rights Reserved , 未经书面授权 , 页面内容不得以任何形式进行复制
参与评论
登录后参与评论