在生命科学与医药研发的最前沿,每一项突破都离不开精密、可靠的实验工具。在刚刚过去的2025年,四篇发表于国际知名期刊的研究成果不约而同地使用了同一个关键设备——玉研仪器的肺部雾化给药器。
这不仅是对我们产品的高度认可,更清晰地勾勒出其在呼吸系统疾病研究领域的广泛应用与核心价值。今天,就让我们一同走进这些前沿级研究,看看玉研仪器如何赋能科学家们攻克一个又一个科研难题。
急性肺损伤常伴随过量活性氧(ROS)的产生,导致组织损伤加剧。《Chemical Engineering Journal》(IF 13.19)开发了一种具有超氧化物歧化酶(SOD)模拟活性的碳点纳米酶(CDzyme),旨在原位清除ROS。为验证其治疗效果,研究需将CDzyme精准递送至受损肺区。
作者使用玉研肺部雾化给药器,将CDzyme水分散液雾化后给予LPS诱导的ALI小鼠。结果显示,雾化组小鼠肺组织中MDA(丙二醛)水平显著下降,SOD活性恢复,病理评分改善。更重要的是,研究通过ICP-MS检测肺部碳元素含量,证实雾化给药可实现高效肺靶向,而全身暴露量极低,降低了潜在毒性风险。
该实验的成功,依赖于设备对低浓度纳米悬浮液的稳定雾化能力——许多雾化器在处理高粘度或含颗粒体系时易发生堵塞或输出不稳定,而玉研系统在此类应用场景中表现出良好的兼容性。
关于文献的详细解读可阅读以下文章
《Journal of Pharmaceutical and Biomedical Analysis》发表的一项研究聚焦经典中药复方“清肺排毒颗粒”(QFPDG)在急性肺损伤(ALI)中的治疗潜力。为更贴近临床实际给药方式,研究团队未采用腹腔注射或灌胃等全身给药途径,而是选择气道局部雾化给药,以评估药物在肺组织中的直接作用。
在该研究中,作者首先通过脂多糖(LPS)气管滴注建立小鼠ALI模型,随后使用玉研肺部雾化给药器将QFPDG水提物溶液雾化后供小鼠自由吸入。该设备能够稳定产生粒径分布集中(MMAD ≈ 2–4 μm)的气溶胶,确保药物有效沉积于下呼吸道。
通过对比肺泡灌洗液(BALF)中炎症因子(如IL-6、TNF-α)水平及肺组织病理切片,研究证实雾化给药组显著优于口服组,凸显了局部给药在肺部炎症控制中的优势。这一设计依赖于雾化系统的剂量可控性与气溶胶均匀性,而玉研设备在此过程中提供了可靠的技术保障。
关于文献的详细解读可阅读以下文章
特发性肺纤维化(IPF)治疗面临的核心挑战之一是药物难以穿透气道表面的黏液层。《Science Advances》(IF 12.5)报道了一种新型柔性两性离子胶束载体,用于高效递送抗纤维化药物尼达尼布(Nintedanib)。为在活体水平验证其递送效率,研究团队构建了博来霉素诱导的小鼠肺纤维化模型,并采用玉研肺部雾化给药器将载药胶束雾化吸入。
该研究的关键在于定量比较不同载体在肺组织中的分布差异。通过荧光标记与近红外成像,作者发现经玉研设备雾化后,柔性胶束在肺实质中的蓄积量是传统刚性纳米粒的3.2倍,且能更有效地穿透黏液屏障。
这一结论的可靠性高度依赖于雾化过程的重现性——若气溶胶粒径波动过大,将导致肺部沉积位置不一致,干扰定量结果。玉研设备通过精密控制压缩空气流速与液体流率,确保了批次间雾化性能的高度一致,为纳米载体的体内评价提供了标准化平台。
发表于《Journal of Virology》的一项工作针对高致病性H5N1禽流感病毒,开发了一种具有广谱中和能力的单域纳米抗体(VHH)。为验证其在感染后治疗中的有效性,研究需在病毒攻击后将抗体直接递送至呼吸道,以建立局部免疫屏障。
作者采用玉研肺部雾化给药器,在小鼠感染H5N1后24小时,将纯化的VHH抗体溶液雾化吸入。设备可对多只小鼠同步定量给药,保证了实验组间的一致性。结果显示,雾化给予VHH可显著降低肺部病毒载量、减轻肺水肿,并提高生存率。
值得注意的是,该研究特别强调了雾化过程对抗体结构完整性的影响——通过SDS-PAGE和ELISA验证,经玉研设备雾化后的VHH仍保持完整构象与结合活性,说明其温和的雾化机制适用于蛋白质类生物大分子。这一特性对于未来吸入型抗体、疫苗或细胞因子的临床前评价具有重要意义。
这四篇横跨中药药理、抗病毒免疫、吸入制剂递送、纳米医药四大热门领域的研究,共同揭示了玉研肺部雾化给药器的核心优势:
精准可靠:确保药物/试剂以稳定、可控的方式直达肺部,实验数据高度可重复;
应用广泛:无论是水溶性药物、脂质体、纳米颗粒还是生物大分子,均能高效递送,适配多样化的科研需求;
市场认可:已成为全球众多顶尖高校、科研院所及制药企业的标准配置,是高质量研究的设备。
部分用户名单
1. Lu, Peng, et al. "Circulating Mitochondrial N-Formyl Peptides Are Associated with Acute Respiratory Distress Syndrome after Cardiopulmonary Bypass and Regulate Endothelial Barrier through FPR2." American Journal of Respiratory Cell and Molecular Biology 72.5 (2025): 533-550.
DOI: 10.1165/rcmb.2024-0076OC
2.Zhang, Chenghao, et al. "Emodin nanocrystals enhanced mucus penetration and ameliorated bleomycin-induced pulmonary fibrosis by pulmonary delivery." Journal of Drug Targeting (2025): 1-11.
DOI: 10.1080/1061186X.2025.2497369
3. Yan, Jiahui, et al. "Effects of Simiao Pill on rheumatoid arthritis complicated with interstitial lung disease via the ATX/LPA/LPA1 and RhoA/ROCK2 signaling pathways." (2025).
DOI: 10.21203/rs.3.rs-6597839/v1
4. Xu, Siqi, et al. "Identification and characterization of a broadly neutralizing and protective nanobody against the HA1 domain of H5 avian influenza virus hemagglutinin." Journal of Virology 99.5 (2025): e02090-24.
DOI: 10.1128/jvi.02090-24
5. Xu Y, et al. "Multifunctional Gold Nanoclusters for a Lung Tissue Distribution Study of a Novel Anti-asthma Inhaled Antibody. " Anal Chem. 2025 Sep 16;97(36):19635-19653.
DOI: 10.1021/acs.analchem.5c03043
6. Wang B, et al. "A softness zwitterionic micelles efficiently deliver inhaled nintedanib by enhancing airway mucus penetration. " Sci Adv. 2026 Jan 2;12(1):eady1030.
DOI: 10.1126/sciadv.ady1030
7. Yang Y, et al. "Preparation, characterisation and pharmacokinetics evaluation of dry power inhalation formulations of polymyxin B. " Pharm Dev Technol. 2025 Feb;30(2):177-185.
doi: 10.1080/10837450
8.Pan, Tingyu, et al. "Identification of potential mechanisms of Schisandrin B in the treatment of idiopathic pulmonary fibrosis by integrating network pharmacology and experimental validation." Naunyn-Schmiedeberg's Archives of Pharmacology (2024): 1-15.
DOI: 10.1007/s00210-024-03605-7
9.Sun, Xiaolin, et al. "GSTP alleviates acute lung injury by S-glutathionylation of KEAP1 and subsequent activation of NRF2 pathway." Redox Biology 71 (2024): 103116.
DOI: 10.1016/j.redox.2024.103116
10.Meng, Qinghe, et al. "Induced pluripotent stem cell-derived mesenchymal stem cells-derived extracellular vesicles attenuate LPS-induced lung injury and endotoxemia in mice." Shock 62.2 (2024): 294-303.
DOI: 10.1097/SHK.0000000000002381
11. Zhu, Chuanda, et al. "An elastase nanocomplex with metal cofactors for enhancement of target protein cleavage activity and synergistic antitumor effect." Chemical Engineering Journal (2024): 149902.
DOI:10.1016/j.cej.2024.149902.
12. Han, Meng-Meng et al. “Inhaled nanoparticles for treating idiopathic pulmonary fibrosis by inhibiting honeycomb cyst and alveoli interstitium remodeling.” Journal of controlled release : official journal of the Controlled Release Society vol. 366 (2024): 732-745. DOI:10.1016/j.jconrel.2024.01.032
13. Zhang, Huizhe, et al. "Integrative analysis of the efficacy and pharmacological mechanism of Xuefu Zhuyu decoction in idiopathic pulmonary fibrosis via evidence-based medicine, bioinformatics, and experimental verification." Heliyon 10.19 (2024).
DOI: 10.1016/j.heliyon.2024.e38122
14. Yeshwante, Shekhar. "SYSTEMS-BASED APPROACH TO DESIGN AND OPTIMIZATION OF TREATMENT FOR PULMONARY INFECTIONS: STRATEGY TO COMBAT ANTIMICROBIAL RESISTANCE." (2024).
15. Chen, Huanjie, et al. "Enhanced secretion of hepatocyte growth factor in human umbilical cord mesenchymal stem cells ameliorates pulmonary fibrosis induced by bleomycin in rats." Frontiers in Pharmacology 13 (2023): 1070736.
DOI: 10.3389/fphar.2022.1070736
16. Wang, Shuo, et al. "Sustainably released nanoparticle-based rhynchophylline limits pulmonary fibrosis by inhibiting the TEK-PI3K/AKT signaling pathway." Translational Lung Cancer Research 12.3 (2023): 427.
DOI: 10.21037/tlcr-22-675
17. Wang, Ping, et al. "Effect of intratracheal instillation of ZnO nanoparticles on acute lung inflammation induced by lipopolysaccharides in mice." Toxicological Sciences 173.2 (2020): 373-386.
DOI: 10.1093/toxsci/kfz234
18. Ma, Julia, et al. "Prophylactic nCMT-3 attenuates sepsis-induced acute kidney injury in association with NLRP3 inflammasome activation and apoptosis." Shock 59.6 (2023): 922-929.
DOI: 10.1097/SHK.0000000000002118
19. Zhang, Huizhe, et al. "Danggui buxue decoction ameliorates idiopathic pulmonary fibrosis through MicroRNA and messenger RNA regulatory network." Evidence‐Based Complementary and Alternative Medicine 2022.1 (2022): 3439656.
DOI: 10.1155/2022/3439656
20. Ba, Xin, et al. "Simiao pill attenuates collagen-induced arthritis and bleomycin-induced pulmonary fibrosis in mice by suppressing the JAK2/STAT3 and TGF-β/Smad2/3 signalling pathway." Journal of Ethnopharmacology 309 (2023): 116274.
DOI: 10.1016/j.jep.2023.116274
21. Santin, Yohan, et al. "Inhalation of acidic nanoparticles prevents doxorubicin cardiotoxicity through improvement of lysosomal function." Theranostics 13.15 (2023): 5435.
DOI: 10.7150/thno.86310
22.CHENG, Zhipeng, et al. "Therapeutic effect of perfluorocarbon aerosol inhalation on lung injury induced by seawater inhalation in rats." ACADEMIC JOURNAL OF CHINESE PLA MEDICAL SCHOOL 44.5 (2023): 508-513.
DOI: 10.3969/j.issn.2095-5227.2023.05.012
23. Feng, Xin et al. “First magnetic particle imaging to assess pulmonary vascular leakage in vivo in the acutely injured and fibrotic lung.” Bioengineering & translational medicine vol. 9,2 e10626. 29 Nov. 2023.
DOI:10.1002/btm2.10626
24. Fan, Weiyang et al. “Naringenin regulates cigarette smoke extract-induced extracellular vesicles from alveolar macrophage to attenuate the mouse lung epithelial ferroptosis through activating EV miR-23a-3p/ACSL4 axis.” Phytomedicine : international journal of phytotherapy and phytopharmacology vol. 124 (2024): 155256.
DOI:10.1016/j.phymed.2023.155256
25. Li, Cheng et al. “Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain antibody.” Cell vol. 185,8 (2022): 1389-1401.e18.
DOI:10.1016/j.cell.2022.03.009
26. Liu, Chang et al. “An Inhalable Hybrid Biomimetic Nanoplatform for Sequential Drug Release and Remodeling Lung Immune Homeostasis in Acute Lung Injury Treatment.” ACS nano vol. 17,12 (2023): 11626-11644.
DOI:10.1021/acsnano.3c02075
27. Peng, Boya et al. “Robust delivery of RIG-I agonists using extracellular vesicles for anti-cancer immunotherapy.” Journal of extracellular vesicles vol. 11,4 (2022): e12187. DOI:10.1002/jev2.12187
28. Yang, Guang, et al. "Noncovalent co-assembly of aminoglycoside antibiotics@ tannic acid nanoparticles for off-the-shelf treatment of pulmonary and cutaneous infections." Chemical Engineering Journal 474 (2023): 145703.
DOI:10.1016/j.cej.2023.145703.
29. Sun, Han et al. “Application of Lung-Targeted Lipid Nanoparticle-delivered mRNA of soluble PD-L1 via SORT Technology in Acute Respiratory Distress Syndrome.” Theranostics vol. 13,14 4974-4992. 4 Sep. 2023,
DOI:10.7150/thno.86466
30. Yue, Dayong et al. “Diesel exhaust PM2.5 greatly deteriorates fibrosis process in pre-existing pulmonary fibrosis via ferroptosis.” Environment international vol. 171 (2023): 107706. DOI:10.1016/j.envint.2022.107706
31. Zhang, Mengjun et al. “Airway epithelial cell-specific delivery of lipid nanoparticles loading siRNA for asthma treatment.” Journal of controlled release : official journal of the Controlled Release Society vol. 352 (2022): 422-437.
DOI:10.1016/j.jconrel.2022.10.020
32. Gu, Peiyu et al. “Protective function of interleukin-22 in pulmonary fibrosis.” Clinical and translational medicine vol. 11,8 (2021): e509.
DOI:10.1002/ctm2.509
33. Wu, Lan et al. “Poly(lactide-co-glycolide) Nanoparticles Mediate Sustained Gene Silencing and Improved Biocompatibility of siRNA Delivery Systems in Mouse Lungs after Pulmonary Administration.” ACS applied materials & interfaces vol. 13,3 (2021): 3722-3737. DOI:10.1021/acsami.0c21259
34. Tian, Xidong et al. “Pulmonary Delivery of Reactive Oxygen Species/Glutathione-Responsive Paclitaxel Dimeric Nanoparticles Improved Therapeutic Indices against Metastatic Lung Cancer.” ACS applied materials & interfaces vol. 13,48 (2021): 56858-56872. DOI:10.1021/acsami.1c16351
35. Lin, Wei-Ting et al. “Modulation of experimental acute lung injury by exosomal miR-7704 from mesenchymal stromal cells acts through M2 macrophage polarization.” Molecular therapy. Nucleic acids vol. 35,1 102102. 14 Dec. 2023.
DOI:10.1016/j.omtn.2023.102102
36. Yang, Huilin et al. “Triptolide dose-dependently improves LPS-induced alveolar hypercoagulation and fibrinolysis inhibition through NF-κB inactivation in ARDS mice.” Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie vol. 139 (2021): 111569. DOI:10.1016/j.biopha.2021.111569
37. Feng, Xin et al. “First magnetic particle imaging to assess pulmonary vascular leakage in vivo in the acutely injured and fibrotic lung.” Bioengineering & translational medicine vol. 9,2 e10626. 29 Nov. 2023,.
DOI:10.1002/btm2.10626
38. Xiao, Xue et al. “SerpinB1 is required for Rev-erbα-mediated protection against acute lung injury induced by lipopolysaccharide-in mice.” British journal of pharmacology vol. 180,24 (2023): 3234-3253.
DOI:10.1111/bph.16175
39. Su, Ruonan et al. “Venetoclax nanomedicine alleviates acute lung injury via increasing neutrophil apoptosis.” Biomaterials science vol. 9,13 (2021): 4746-4754. DOI:10.1039/d1bm00481f
40. Xu, Yingying et al. “PEGylated pH-responsive peptide-mRNA nano self-assemblies enhance the pulmonary delivery efficiency and safety of aerosolized mRNA.” Drug delivery vol. 30,1 (2023): 2219870.
DOI:10.1080/10717544.2023.2219870
41. Wu, Yanqi et al. “SN50 attenuates alveolar hypercoagulation and fibrinolysis inhibition in acute respiratory distress syndrome mice through inhibiting NF-κB p65 translocation.” Respiratory research vol. 21,1 130. 27 May. 2020。
DOI:10.1186/s12931-020-01372-6
42. Chen, Huanjie et al. “Enhanced secretion of hepatocyte growth factor in human umbilical cord mesenchymal stem cells ameliorates pulmonary fibrosis induced by bleomycin in rats.” Frontiers in pharmacology vol. 13 1070736. 6 Jan. 2023.
DOI:10.3389/fphar.2022.1070736
43. Han, Meishan et al. “Engineering of Stimulus-Responsive Pirfenidone Liposomes for Pulmonary Delivery During Treatment of Idiopathic Pulmonary Fibrosis.” Frontiers in pharmacology vol. 13 882678. 25 Apr. 2022.
DOI:10.3389/fphar.2022.882678
44. Cai, Zimin, et al. "Enhanced protective activity of 1, 8-cineole on emphysema using hyaluronic acid-coated liposomes via quantitative pulmonary administration in mice." Journal of Drug Delivery Science and Technology 72 (2022): 103402.
DOI:10.1016/j.jddst.2022.103402
45. Wu, Lan, et al. "Quantitative comparison of three widely-used pulmonary administration methods in vivo with radiolabeled inhalable nanoparticles." European Journal of Pharmaceutics and Biopharmaceutics 152 (2020): 108-115.
DOI:10.1016/j.ejpb.2020.05.004
46. Peng, Jianqing et al. “Carboxymethyl Chitosan Modified Oxymatrine Liposomes for the Alleviation of Emphysema in Mice via Pulmonary Administration.” Molecules (Basel, Switzerland) vol. 27,11 3610. 4 Jun. 2022.
DOI:10.3390/molecules27113610
47. Chen, Huanjie et al. “Enhanced secretion of hepatocyte growth factor in human umbilical cord mesenchymal stem cells ameliorates pulmonary fibrosis induced by bleomycin in rats.” Frontiers in pharmacology vol. 13 1070736. 6 Jan. 2023.
DOI:10.3389/fphar.2022.1070736
48. Wang, Ping et al. “Effect of Intratracheal Instillation of ZnO Nanoparticles on Acute Lung Inflammation Induced by Lipopolysaccharides in Mice.” Toxicological sciences : an official journal of the Society of Toxicology vol. 173,2 (2020): 373-386.
DOI:10.1093/toxsci/kfz234
49. Meng, Qinghe et al. “Nano-chemically Modified Tetracycline-3 (nCMT-3) Attenuates Acute Lung Injury via Blocking sTREM-1 Release and NLRP3 Inflammasome Activation.” Shock (Augusta, Ga.) vol. 57,5 (2022): 749-758.
DOI:10.1097/SHK.0000000000001927
50. Chen, Ping et al. “Chronic exposure to ampicillin alters lung microbial composition in laboratory rat.” Experimental lung research vol. 49,1 (2023): 116-130.
DOI:10.1080/01902148.2023.2219790
自研核心,铸就非凡实力
上海玉研科学仪器有限公司,作为业内领先的科研设备制造商,自2010年成立以来16年始终秉承创新驱动发展,自研铸就精品”的核心理念,致力于科学仪器的自主研发与生产,目前产品线覆盖实验动物饲养、生理信号采集、神经科学研究等多个科研及应用领域,不仅在常规仪器上不断优化升级,更勇于探索前沿技术,推出了一系列具有自主知识产权的高端科学仪器。
公司研发人员占比40%,拥有传感器、芯片设计、核心算法等科学家团队,在产品落地与运营,市场与学术推广,综合产品方案设计与应用等方面均有专业的团队提供支持,公司拥有可覆盖全国的服务点,技术服务能力强大,客户涵盖清华大学、北京大学、浙江大学、上海交通大学、中国科学院大学、四川大学华西医院、北部战区总医院等国内外一流研究机构、医院。
全部评论(0条)
小动物麻醉机(ABS型)
报价:面议 已咨询 260次
多通道小动物麻醉机
报价:面议 已咨询 154次
多通道动物麻醉机
报价:面议 已咨询 171次
ABF型小动物麻醉机
报价:面议 已咨询 233次
便携式小动物麻醉机
报价:面议 已咨询 192次
动物麻醉机配件
报价:面议 已咨询 187次
MRI磁共振兼容麻醉机
报价:面议 已咨询 195次
七氟烷麻醉机
报价:面议 已咨询 276次
①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。
②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。
③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi
长云科技电缆输送机用户真实评价
参与评论
登录后参与评论