仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

资讯中心

当前位置:仪器网>资讯中心> 成果> 正文

实力见证 | PRI-8800荣获欧盟CE认证,2025年度科研文献量持续领跑!

来源:北京普瑞亿科科技有限公司 更新时间:2026-01-13 18:15:24 阅读量:63
导读:实力见证 | PRI-8800荣获欧盟CE认证,2025年度科研文献量持续领跑!


为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。


学术痛点与解决方案




摄图网_308035721_用标志技术在土壤中耕种的肥沃岩质土壤是植物的基本食植地面标志农场(企业商用).jpg

背景

土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(10)可以刻画土壤有机质分解对温度变化的响应程度。

Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。

摄图网_700429457_城市远景中的树木与输电塔(企业商用).jpg


痛点

以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。

摄图网_700972356_深圳坪山城市绿地河流与现代建筑生态风光(企业商用).jpg


PRI-8800

PRI-8800全自动变温培养土壤温室气体在线测量系统,为Q10研究提供高效、精准的整体解决方案。

不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。





2025年度发表文献汇总




截至2025年12月,PRI-8800已助力多项前沿研究:


  • 新兴污染物研究:评估聚乙烯和PBAT污染对土壤呼吸和碳封存的影响。

  • 气候变化与极端环境:研究凋落物如何调节高寒草甸土壤碳矿化的温度敏感性。


  • 土地利用与管理:探讨氮沉降下细根衍生有机物与微生物对CO2排放的调节。

  • 生物交互作用:揭示蚯蚓如何显著增强土壤有机质分解的温度敏感性。

2025年文章总结:
  1. Zhou Z, Zhang N, Wang Y, et al. Litter regulates the priming effect of carbon mineralization and its temperature sensitivity during freeze–thaw cycles in alpine swamp meadow soils[J]. Plant and Soil, 2025: 1-19.

  2. Wang H, Jing H, Ma H, et al. Interactions between fine root-derived dissolved organic matter and K-strategy-dominated soil microbes regulate soil CO2 emissions in a Pinus tabulaeformis plantation under N deposition[J]. Soil and Tillage Research, 2026, 256: 106878.

  3. Gao M , Hu W , Li M ,et al. Response of soil basal respiration rates, microbial attributes, and organic matter composition to land - use change[J].Soil Science Society of America Journal, 2025, 89(2).DOI:10.1002/saj2.70052.

  4. Zheng J , Groenigen K J V , Hartley I P ,et al. Temperature sensitivity of bacterial species-level preferences of soil carbon pools[J]. Geoderma, 2025, 456. DOI:10.1016/j.geoderma.2025.117268.

  5. Zhao S , Chai H , Liu Y ,et al. Earthworms significantly enhance the temperature sensitivity of soil organic matter decomposition: Insights into future soil carbon budgeting[J].Agricultural and Forest Meteorology, 2025, 362.DOI:10.1016/j.agrformet.2025.110384.

  6. M Liu , Y Yu , Y Liu , S Xue , DWS Tang , X Yang ,et al. Effects of polyethylene and poly (butylenedipate-co-terephthalate) contamination on soil respiration and carbon sequestration[J].Environmental Pollution, 2025, 364.DOI:10.1016/j.envpol.2024.125315.

  7. Zhou, X . , Feng, Z . , Yao, Y . , Liu, R . , Shao, J . , & Jia, S . ,et al. Nitrogen input alleviates the priming effects of biochar addition on soil organic carbon decomposition. [J]. Soil Biology and Biochemistry, 2025, 202.

  8. You M, Guo D, Shi H, et al. Microbial nutrient limitations and chemical composition of soil organic carbon regulate the organic carbon mineralization and temperature sensitivity in forest and grassland soils[J]. Plant and Soil, 2025: 1-18.




权威认证与创新奖项



01
欧洲通行证


PRI-8800及PRI-8800 Plus已成功取得由TüV Rheinland(莱茵)颁发的欧盟CE认证(CERTIFICATE of Conformity Directive 2014/53/EU Radio Equipment)。这证明设备在安全性、电磁兼容性以及无线电性能方面均达到了国际领先水平,具备进军全球市场的“通行证”。

CE

点击即可查看大图


02
科技创新奖


设备荣获2025年北京企业评价协会科技创新奖一一科技创新产品(优秀奖),技术先进性获行业认可。


03
自主知识产权


拥有发明专利计算机软件著作权,确保核心技术的自主可控。

全自动变温培养土壤温室气体在线测量系统.jpg


为什么科研先行者都选它?



1.超高精度温控:温度控制范围覆盖-15℃至60℃,波动精度优于±0.05℃,满足宽温域研究需求。

2.极速变温能力:PRI-8800 型号升降温速率可达1℃/min,可精准模拟热浪、日温度波动等动态场景。

3.开放式集成设计:内置CO?/H?O分析模块,支持外接CH?、N?O高精度分析仪及CO2同位素分析仪,拓展多气体、同位素耦合研究。


选型推荐:

PRI-ECO 8800两款对比.png



相关链接:





加强版来了!PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统


想要获取了解更多技术方案?

后台留言,我们的技术专家将为您提供1对1咨询服务。


如果您对我们的产品或本期内容有任何问题,欢迎致电垂询:

  • 地址:北京市海淀区瀚河园路自在香山98-1号楼

  • 电话:010-51651246 88121891

  • 邮箱:info@pri-eco.com


扫码关注

微信号:普瑞亿科PRIECO
新浪微博:@普瑞亿科


04
相关文献发表



1.Zhou Z, Zhang N, Wang Y, et al. Litter regulates the priming effect of carbon mineralization and its temperature sensitivity during freeze–thaw cycles in alpine swamp meadow soils[J]. Plant and Soil, 2025: 1-19.

2.Wang H, Jing H, Ma H, et al. Interactions between fine root-derived dissolved organic matter and K-strategy-dominated soil microbes regulate soil CO2 emissions in a Pinus tabulaeformis plantation under N deposition[J]. Soil and Tillage Research, 2026, 256: 106878.

3.Gao M , Hu W , Li M ,et al. Response of soil basal respiration rates, microbial attributes, and organic matter composition to land‐use change[J].Soil Science Society of America Journal, 2025, 89(2).DOI:10.1002/saj2.70052.

4.Zheng J , Groenigen K J V , Hartley I P ,et al. Temperature sensitivity of bacterial species-level preferences of soil carbon pools[J]. Geoderma, 2025, 456. DOI:10.1016/j.geoderma.2025.117268.

5.Zhao S , Chai H , Liu Y ,et al. Earthworms significantly enhance the temperature sensitivity of soil organic matter decomposition: Insights into future soil carbon budgeting[J].Agricultural and Forest Meteorology, 2025, 362.DOI:10.1016/j.agrformet.2025.110384.

6.M Liu,Y Yu,Y Liu,S Xue,DWS Tang,X Yang ,et al. Effects of polyethylene and poly (butyleneadipate-co-terephthalate) contamination on soil respiration and carbon sequestration[J].Environmental Pollution, 2025, 364.DOI:10.1016/j.envpol.2024.125315.

7.Zhou, X. ,  Feng, Z. , Yao, Y. ,  Liu, R. ,  Shao, J. , &  Jia, S. , et al. Nitrogen input alleviates the priming effects of biochar addition on soil organic carbon decomposition. [J].  Soil Biology and Biochemistry, 2025, 202.

8.You M, Guo D, Shi H, et al. Microbial nutrient limitations and chemical composition of soil organic carbon regulate the organic carbon mineralization and temperature sensitivity in forest and grassland soils[J]. Plant and Soil, 2025: 1-18.

9.Wang C, Ren J, Cui Y, et al. Grazing-N addition interactions drive soil carbon priming and balance via bacterial assimilation in a meadow steppe [J]. Journal of Applied Ecology, 2025.

10.Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils & Sediments: Protection, Risk Assessment, & Remediation, 2024, 24(1).DOI:10.1007/s11368-023-03602-y.

11.Yuna Ning, Zhanyi Wang, Cuiping Gao, et al. Effects of Different Grazing Intensities on Soil Respiration Rate and Its Temperature Sensitivity in Desert Steppe. [J]. Acta Agrestia Sinica, 2024, 32(10):3233-3240.DOI:10.11733/j.issn.1007-0435.2024.10.024.

12.Liu R , Zhou X , He Y ,et al. A transition from arbuscular to ectomycorrhizal forests halts soil carbon sequestration during subtropical forest rewilding[J].Science of the Total Environment, 2024, 946.DOI:10.1016/j.scitotenv.2024.174330.

13.Kang Y, Shen L, Li C, et al. Effects of vegetation degradation on soil microbial communities and ecosystem multifunctionality in a karst region, southwest China[J]. Journal of Environmental Management, 2024, 363: 121395.

14.Jun Pan, Yuan Liu, Nianpeng He, Chao Li, Mingxu Li, Li Xu, Osbert Jianxin Sun. 2024. The influence of forest-to-cropland conversion on temperature sensitivity of soil microbial respiration across tropical to temperate zones. Soil Biology and Biochemistry, doi:10.1016/j. soilbio.2024.109322.

15.Zheng J, Mao X, van Groenigen K J, et al. Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau[J]. Geoderma, 2024, 441: 116736.

16.Yuanhao Liu, Decheng Xiong, Chen Wu, Yun Wang, Debao Lin, Jinxue Huang. Effects of exogenous carbon input on soil carbon emissions in evergreen broad-leaved forests [J]. Journal of Forest & Environment,Vol 43(5),DOI: 10.13324/j.cnki.jfcf.2023.05.006

17.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.

18.Xiaoliang Ma, Shengjing Jiang, Zhiqi Zhang, Hao Wang, Chao Song, Jin-Sheng He. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.

19.Yanghui He, Xuhui Zhou, Zhen Jia, Lingyan Zhou, Hongyang Chen, Ruiqiang Liu, Zhenggang Du, Guiyao Zhou, Junjiong Shao, Junxia Ding, Kelong Chen, Iain P. Hartley. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.

20.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.

21.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.

22.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.

23.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.

24.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.

25.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.

26.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.

27.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.

28.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.

29.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.

30.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.

31.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.

32.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.

33.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.

34.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.

35.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.

36.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.

37.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.

38.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.

39.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.



关于我们

Science to Solutions

北京普瑞亿科科技有限公司成立于2007年,是国内领先的仪器设备、系统方案和咨询服务提供商。普瑞亿科参与过科学技术部、中国科学院和北京市科学技术委员会等发起的多个设备研发项目,具有突出的仪器研发、设计和生产能力,可以提供多种痕量和温室气体分析仪、光谱和质谱同位素分析仪、室内和室外土壤呼吸测量系统、高性能数据采集器和云平台服务等,致力为生态环保、能源地质、城市安全、农林牧渔、水文水资源、医疗健康、半导体等行业客户和研究机构提供系统解决方案。

普瑞亿科是国内较早提供高精度温室气体和同位素分析仪的制造商,针对 “双碳”市场需求,在遵循MVS(Monitoring-监测、Verification-核查、Support-支持)体系的前提下,为政府机关、科研院所、企事业单位及其它机构提供“双碳”行动有效性评估和碳核查所需的整套方案,包含定位观测站、车载走航、低空无人机搭载的监测设备租售运维、碳核查核算支持、碳源汇科学评价、以及区域“碳中和”建议。

立足现在、着眼未来,公司始终奉行“诚信服务、质量优先、真诚合作、共同发展”的企业宗旨,秉承服务程序更简单、更灵活、更机动、响应速度更快的经营理念,积极为客户提供更安全、更优质、更可靠、更高效、更高性价比的优秀解决方案和先进产品,让更多的用户获益于世界顶尖级仪器设备带来的非凡成果。


END




参与评论

全部评论(0条)

相关产品推荐(★较多用户关注☆)
你可能还想看
  • 资讯
  • 技术
  • 百科
  • 应用
  • 生物安全柜年度保养
    其正常运行不仅关系到实验数据的准确性,还关系到操作人员的健康与环境安全。随着时间的推移,设备的性能可能受到使用频率、环境因素以及技术更新的影响,定期的年度保养成为确保其持续高效运行的必要措施。本文将围绕生物安全柜的年度保养进行详细阐述,帮助实验室管理人员理解其重要性、具体步骤以及优化建议,从而实现设备的长效维护和安全保障。
    2025-10-1773阅读 生物安全柜
  • 电磁流量计年度保养
    由于其精度高、稳定性强,常常用于测量导电液体的流量。为了保证其长期稳定运行,定期的年度保养显得尤为重要。本文将探讨电磁流量计的年度保养内容与注意事项,帮助用户更好地维护设备,延长使用寿命,提高测量精度,并确保设备在严苛环境下的可靠性。
    2025-10-2090阅读 电磁流量计
  • 恒温恒湿箱认证标准
    随着应用领域的不断拓展,恒温恒湿箱的认证标准也变得尤为重要。本文将深入探讨恒温恒湿箱的认证标准,从设备设计要求到性能测试、合规标准等多个方面,帮助用户理解如何选择符合规定的设备,以确保测试结果的准确性与设备的长期稳定运行。
    2025-10-23157阅读 恒温恒湿箱
  • 科研数据采集注意事项
    在进行数据采集时,必须严格遵循一定的规范和方法,确保数据的真实性和精确性。无论是定量数据还是定性数据,都应在合适的环境下采集,避免人为干扰与偏差的产生。本文将详细探讨科研数据采集中的关键注意事项,帮助研究人员提高数据的准确性与可用性,为后续分析和决策提供有力支持。
    2025-10-22126阅读 数据采集
  • GPC凝胶色谱仪运用文献,plgpc50凝胶色谱仪
    GPC凝胶色谱仪在多个领域的应用体现了其在高分子化合物分析中的重要性。随着科技的不断进步,GPC技术将继续为各行业的发展提供强有力的支持。在未来的研究中,优化GPC技术的应用,将有助于提高分析精度。
    2025-10-22120阅读 凝胶色谱仪
  • 查看更多
版权与免责声明

①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。

②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。

③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。

④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi

热点资讯
捷报!中科都菱斩获第 30 届昆明都市周末杯足球擂台赛娱乐组冠军
海外圈粉 | 2025全球落地实鉴,海尔生物医疗以科技守护生命~
耐寒耐湿热折弯试验箱助力 C919 大飞机研发 完成航空材料环境折弯测试
从“硬核仪器”到“全链方案” —— 莱伯泰科正在重塑实验室的整体解题思路
康宁连续流技术助力化学与制药工业创新突围
应用案例丨赛恩思高频红外碳硫仪助力新疆通冶检测技术有限公司开展多种类样品碳硫检测
泰林 MD500 微生物快检产品获省药检院权威验证,推动制药合规检测升级
LVDT 位移传感器:组成结构与工作原理
近期装机速递--骏德冻干设备跨域服务,助力多行业发展
海外圈粉 | 海尔生物医疗:英为初心,十年深耕
近期话题
相关产品

在线留言

上传文档或图片,大小不超过10M
换一张?
取消