
绝缘材料电气强度测试仪适用材料:橡胶、塑料、薄膜、陶瓷、玻璃、漆膜、树脂、电线电缆、绝缘油等绝缘材料
测试项目:击穿电压测试、介电强度测试、电气强度测试、耐电压击穿强度测试等
试验电压:10KV、20KV、50KV、100KV、150KV等
电压精度:≤1%
适用材料:绝缘材料
升压速率:10V/S-5KV/S
试验方式:交流/直流、耐压、击穿、梯度升压
控制系统:PLC控制升压
核心部件:采用进口配件
试验介质:绝缘油、空气
显示方式:曲线显示、数据打印
其它特点:无线蓝牙控制
设备组成:主机、计算机、电极
电极规格:25mm、75mm、6mm
电器容量:3KVA、5KVA、10KVA
耐压时间:0-8H
安全保护:九级安全保护
质保日期:三年、终身维护。
培训方式:工程师上门培训安装

绝缘材料电气强度测试仪安全保护措施功能:
1、试验在试验箱中进行,试验箱门打开时电源加不到高压变压器输入端,即高压侧无电压。100KV测试设备高压电极距离试验箱壁的近距离大于270mm,50KV测试设备高压电极距离试验箱壁的近距离大于250mm,试验时即使人接触箱壁也不会有危险。
2、设备要安装单独的保护地线。接保护地线,主要是减少试样击穿时对周围产生的较强的电磁干扰。也可避免控制计算机失控。
3、该试验设备的电路设有多项保护措施,主要有:过流保护、过压保护、漏电保护、短路保护、直流试验放电报警,电磁放电等。
4、直流试验放电报警功能:在设备做完直流试验时,当开启试验门时设备会自动报警,直至使用设备上的放电装置放电后报警会自动取消.(注:因为直流试验后不放电会危险到人安全,不能直接拿取电极,起到提醒使用人员放电以免造成伤害)。
5、试验放电装置,电磁铁自动放电放置。
试验软件:
1、独立的控制系统,模块式结构方便于售后维护,外观美观大气,整个实验过程中无噪音,电级自动对中定位,操作方便,安全系数大,精度高。
2、由设备本身触摸屏及控制面板进行操作控制,如不需要进行曲线分析,可不配备计算机。
3、如需进行曲线分析,配备计算机,只进行数据及曲线记录功能,不进行设备控制,避免了试验人员在计算机和设备间交替操作,更人性化。
4、设备具有试验参数,相同试验条件不需要每次试验都进行设置,且断电仍会记忆醉后一次试验设置参数。
5、试验界面简单明了,且配有示意曲线说明,参数不同,曲线走势不同,方便理解。
6、控制面板简洁,功能标注明确,操作简单。
7、可记录并同时显示10次试验记录,方便试验数据的对比分析。且可以随时舍弃不理想的任意一组数据。
8、增加了U盘下载功能,可以将设备中的试验记录直接下载到U盘中。
9、如配备计算机,可生成详细的试验报告单,包括每一组具体信息,多组综合信息,及曲线。
10、设备试验界面采用仪表盘及数字同时且实时显示的方式,更方便试验过程的观看。
11、设备具有安全警告提示,在未关闭试验箱门时试验无法开始,且会弹出警告,在满度(即:高压变压器无输出)时会弹出警告,且试验过程中如果开门,试验会自动结束。
12、采用蓝牙数据传输,解决由于有隔离墙阻挡穿墙过线的麻烦和远距离操作安全可靠;
13、设备配有三色报灯,绿灯亮时表示箱门关闭良好可以开始试验,黄灯亮时表示试验箱门打开,此时可进行试样更换。红灯亮时表示高压大于0.5KV,此时不要开箱门。直流试验结束放电过程警报灯会闪烁且报警。(总结:绿灯箱门关闭良好,黄灯开门小心操作,红灯有高压)

仪器组成:
1、升压部件:由调压器和升压变压器组成升压部分;
2、驱动部件:控制器和电机进电机均匀调节升压变压器;
3、检测部件:集成电路组成的测量电路;
4、计算机测控系统;
5、箱体控制系统
电压击穿试验仪:原理、设备与应用
目录
1. 试验概述与必要性
2. 击穿类型与机理
3. 关键影响因素
4. 试验设备系统构成
5. 局部放电观测
6. 总结与应用
1. 试验概述与必要性
核心概念
击穿试验:逐步升高施加于样品上的电压,直至样品发生破坏性击穿,以测定其击穿电压与击穿场强,属于破坏性试验。
耐压试验:在规定条件下对样品施加一定电压并维持特定时间,检验其是否发生击穿,属于非破坏性或考核性试验。
试验必要性
验证介质材料在严苛工作条件(如低气压、高温)下的绝缘可靠性。
检测因生产工艺或材料缺陷(如毛刺、金属杂质)导致的潜在绝缘失效风险。
防止正常工作条件下发生介质击穿或表面飞弧,确保产品安全。

2. 击穿的主要类型与机理
电击穿:强电场作用下,介质内部载流子雪崩式电离导致击穿,过程迅速。
热击穿:介质损耗产生的热量大于散热量,内部温度持续上升至临界值引发的击穿。
飞弧(边缘)击穿:因电场不均匀、气体介电强度低及表面污染等因素,沿介质表面形成放电通道导致的击穿。
老化击穿:在长期低于击穿电压的应力作用下,材料绝缘性能逐渐劣化并导致的击穿。
安全首要原则:无论发生何种击穿,必须首先切断电源。
3. 影响试验结果的关键因素
电场均匀性:应尽量在均匀电场下测试,以真实反映材料本征特性。不均匀电场会改变击穿位置和发展路径。
电压波形:通常包括交流(工频)、直流和脉冲电压。
交流电压下测得的击穿电压通常,考核严格,因其峰值电压更高且存在介质损耗。
直流电压下测量值居中,空间电荷效应可能放电发展。
脉冲电压下击穿电压,因作用时间极短,热积累等破坏过程来不及发展。
电压作用时间:击穿过程需要时间。随着加压时间增加,击穿电压显著下降,这对热击穿和局部放电击穿尤为明显。
4. 电压击穿试验仪的构成与原理
5. 试验装置需满足:电压可平滑调节、能指示并测量击穿、击穿后自动切断电源、操作安全。
工频交流击穿试验装置核心组件:
高压试验变压器:核心升压设备,提供高电压,短时工作制。
调压设备:通常采用自耦变压器,用于平稳调节输入电压。
电压测量系统:可采用高压测量球隙(基于空气间隙放电电压与距离的固定关系)或分压器等。
保护电阻:限制击穿时短路电流,保护变压器并减小其压降。
击穿指示器:检测击穿瞬间的电流或电压突变。
控制与保护线路:由继电器、接触器等组成,实现自动控制与安全保护。
直流击穿试验装置:在交流装置基础上增加高压整流与滤波环节。电压测量可采用静电电压表或高阻值电阻分压器。
脉冲击穿试验装置:通常采用马克斯(Marx)电路,将多个电容器并联充电后串联放电,以产生高压脉冲。需严格控制脉冲波形参数(如波前/波尾时间)。
5.局部放电观测
概念与危害:局部放电是介质内部气隙或表面电场集中处发生的非贯穿性放电。它会逐渐劣化绝缘性能,最终可能导致击穿,是限制工作电压的重要因素。
主要检测方法:
电气检测法:
介质损耗法:通过测量介质损耗角正切值(tanδ)随电压升高的突变来指示起始放电,方法简单但灵敏度较低。
脉冲电流法:检测局部放电产生的脉冲电流信号,灵敏度高,是常用方法。
非电检测法:包括检测放电产生的光、声、化学产物等方法。
6. 总结与应用
电压击穿与耐压试验是评估电气绝缘材料与元器件性能的关键手段。
选择试验类型(击穿/耐压)、电压波形(交流/直流/脉冲)需依据材料应用场景与考核目的。
现代电压击穿试验仪是集成了高压产生、精密测量、自动控制与安全保护的综合系统。
结合局部放电观测等非破坏性试验,可以更全面地评估绝缘系统的长期可靠性,指导产品设计与质量控制。

仪器优势:
1、自动放电;
2、交流电压、直流电压测试误差1%;
3、电极支架采用Y质环氧板;
4、软件可连续做10组试验对比;
5、试验曲线不同颜色,可叠加对比;
6、软件可设置电流保护功能;
7、带有主机控制区域,不通过电脑可单独控制主机;
8、主机带有电压、电流显示功能;
9、内置排风装置;
10、内置照明功能;
11、放电报警装置;
12、蓝牙远程控制;
13、三色灯报警装置(绿灯箱门关闭良好,黄灯开门小心操作,红灯有高压);
14、可实现触摸屏或电脑双重操作;
15、可实现组合编程,梯度升压的升压和耐压时间可分别单独设置;
16、U盘下载功能,可以将设备中的试验记录直接下载到U盘中。电压击穿试验仪工作原理核心原理电压梯度施加通过高压发生器输出可调的交流(AC)、直流(DC)或脉冲电压,以恒定速率(如0.1-5 kV/s)逐步提升至被测材料表面,直至其绝缘性能失效。电压施加过程中,仪器实时监测电场强度变化,捕捉材料极化、电导及局部放电等物理现象,直至发生不可逆击穿。
击穿判定与数据采集。当材料达到介电强度极,电流骤增且电压突变,控制系统通过高精度传感器捕获电流异常信号,并记录此时的峰值电压作为击穿电压值(单位:kV/mm)。数据经处理后自动生成击穿强度、耐压时间等关键参数,支持图表化展示及导出。关键组件协同机制高压发生器支持0-100 kV连续输出,部分定制型号可达更高范围;通过AC/DC/脉冲模式切换满足不同测试标准需求(如IEC 60243、ASTM D149)。
电极系统
采用黄铜或不锈钢材质电极(球-球、板-板等形态),表面精密抛光以降低边缘放电干扰,确保电场分布均匀。
闭环控制系统
计算机或触摸屏界面预设升压速率、电压阈值等参数,动态调整升压曲线避免阶梯式波动,保证测试精度≤2%。测试模式差异
破坏性击穿测试通过持续升压直接测定材料介电强度极限,适用于研发阶段的材料性能评估及质量抽检。
非破坏性耐压测试
施加固定阈值电压(如2倍额定电压+1000V)并保持设定时长(通常60秒),监测泄漏电流是否超标以验证短期绝缘稳定性,多用于生产线终检。安全防护机制实时保护系统
集成过流保护、短路保护、漏电保护等多重机制,触发异常时自动切断高压输出并启动放电程序。
物理隔离设计
配备屏蔽罩与机械联锁装置,防止操作人员接触高压区域;试验舱门开启时自动断电,规避电弧伤害风险。工作原理流程
参数设置(升压速率/电压上限) → 2. 样品安装与电极校准 → 3. 启动升压并实时监测 → 4. 击穿信号捕获 → 5. 数据记录与分析。电压击穿试验仪技术解析一、核心功能与用途
绝缘材料性能评估
测试固体绝缘材料(塑料、薄膜、陶瓷、树脂等)在工频或直流电压下的击穿强度(kV/mm)及耐压时间,为电力设备、新能源等领域提供关键数据支持。
检测材料微观缺陷(如气泡、裂纹),预防因绝缘失效导致的设备故障。
多领域应用
电力行业:评估高压电缆、变压器绝缘子的耐压性能。
新能源:测试电池隔膜、电机绝缘材料的介电特性。
科研:研究新型绝缘材料的失效机理及优化工艺。二、关键技术参数
电压范围
输出范围:AC/DC 0-50kV连续可调,BDJC-100KV可达100kV。
升压速率:100-3000V/s无极调速,满足不同材料的梯度测试需求。
精度与安全
电压测量误差≤2%,配备三级联锁防护(机械/电子/物理隔离)。
过流保护、漏电保护及直流试验自动放电功能,确保操作安全。
智能控制
动态绘制试验曲线,支持数据自动存储及EXCEL/WORD导出。
闭环控制系统实时监测升压曲线,避免阶梯式波动。三、标准体系与测试方法
中国标准
GB/T 1408.1-2006、GB/T 1695-2005等,明确试样预处理、电极规格及油温控制范围(如25±2℃)。
国际标准对比
ASTM D149与IEC 60243在升压方式、测试次数等存在差异(如ASTM允许步进升压,IEC仅认可连续升压)。
测试模式
连续升压:直接测量击穿电压临界值。
耐压测试:保持规定电压时长验证材料稳定性。四、操作规范与注意事项
环境与样品要求
环境湿度≤80%,试样需洁净干燥并严格防尘避光。
液体介质(如变压器油)需控制温度波动±2℃。
安全操作
至少两人协作,禁止直接接触电极及油杯内部。
设备需独立接地,防止电磁干扰导致数据异常。
仪器校准
采用四级校准体系(包括温度补偿设计),确保高压线圈稳定输出。五、选型与发展趋势
设备选型要点
先支持多标准(GB、IEC、ASTM)的智能化型号BDJC系列。
关注升压速率调节精度及数据采集抗干扰能力。
技术升级方向
集成AI算法优化测试效率,开发高温/低温环境适配模块。
增强远程监控功能,满足工业4.0自动化测试需求。

绝缘强度与击穿电压之间有什么关系?一、定义与基本关系
击穿电压
定义:在强电场作用下,绝缘材料失去绝缘性能而变成导体时的临界电压值。
单位:千伏(kV)或伏特(V)。
绝缘强度(击穿场强)
定义:单位厚度的绝缘材料能承受的电场强度,反映材料本身的耐电能力。
单位:千伏/毫米(kV/mm)或兆伏/米(MV/m)。二、区别与联系
物理意义差异
击穿电压:表征材料在特定厚度下的耐压极限,与材料厚度直接相关。
绝缘强度:反映材料单位厚度的耐电场能力,是材料本身的固有属性。
应用场景差异
绝缘强度:用于横向对比不同材料的绝缘性能(如塑料、陶瓷等)。
击穿电压:指导电气设备设计时确定绝缘层厚度或安全电压阈值。
影响因素
绝缘强度:主要由材料组成、微观结构及温度决定(如高温下易发生热击穿)。
击穿电压:除材料本身外,还受厚度、环境温湿度及电压类型(交流/直流)影响。三、典型应用
材料筛选:高绝缘强度材料(如E=30kV/mm的陶瓷)适用于高压变压器绝缘层。
设备设计:通过击穿电压公式反推绝缘层小厚度(如电缆绝缘层设计)。
安全评估:结合两者关系验证电力设备长期运行的可靠性(如光伏组件封装材料测试)总结
绝缘强度是材料抵抗电场破坏的固有属性,而击穿电压是其厚度相关的耐压表现。两者通过数学公式关联,共同为绝缘材料性能评估和电气设备设计提供核心依据
击穿电压测试方法主要包括以下几种类型及操作流程:一、测试方法分类
工频交流击穿测试
原理:施加工频交流电压并逐步升压至试样击穿,记录击穿电压值。
步骤:
样品安装于电极间(如漆包线缠绕于圆柱形电极)。
设置升压速率(如100-500V/s)。
持续升压直至击穿,记录击穿电压。
直流击穿测试
原理:采用直流电压评估材料在稳定电场下的绝缘性能。
步骤:
连接直流高压电源,升压速率较慢(如50-200V/s)。
观察电流变化,记录击穿瞬间电压值。
脉冲击穿测试
原理:模拟瞬态过电压(如雷击),测试材料在高频或脉冲条件下的绝缘强度。
步骤:
施加标准波形脉冲电压(如雷电冲击波形)。
多次冲击后记录击穿电压。
局部放电与热击穿测试
局部放电:监测绝缘材料内部放电信号,评估潜在缺陷。
热击穿:结合升温与升压,测试材料在高温下的耐压能力。二、通用操作流程
准备阶段
检查设备连接线、电极接触状态及样品完整性。
设置环境条件(温度、湿度)并穿戴防护装备(绝缘手套、护目镜)。
设备连接与参数设置
高压电源连接至电极,串联电压/电流表。
选择升压模式(匀速或阶梯升压)及量程。
测试执行
启动升压系统,实时监测电压/电流变化。
击穿后自动切断电源并记录数据,重复测试取平均值。
安全防护
设备配置过流保护、门联锁及放电装置。
直流测试后需手动放电以避免触电。
三、测试标准与设备配置
适用标准
国际标准:ASTM D149(固体材料介电击穿测试)。
国内标准:GB/T 1408.1-2006(绝缘材料电气强度试验)。
设备核心参数
电压范围:覆盖交流/直流0-150kV(如BDJC-50KV型号)。
升压速率:0.05-5kV/s可调。
电极设计:圆形电极(直径25/75mm)减少边缘放电影响。
四、典型应用场景
光伏材料:EVA封装材料需验证工频/直流击穿强度。
漆包线:通过交流或直流测试评估绝缘层极限电压。
电缆与变压器:耐压试验确保设备长期运行稳定性。
以上方法通过多维度评估材料绝缘性能,确保电气设备的安全性与合规性产品安全合规性测试中的击穿电压检测一、测试标准与规范
国际标准
IEC 60243-1:定义高压试验的基本术语、试验条件及程序,适用于电气设备和材料的击穿电压测试。
ASTM D149:针对固体绝缘材料的电气强度测试,包括击穿电压测定。
国内标准
GB/T 1408.1-2006:规定绝缘材料电气强度试验方法,明确工频/直流击穿测试流程。
GB/T 4074.5:漆包线击穿电压测试的专项标准,要求验证绝缘层极限耐压性能。 二、测试流程与操作
样品准备
清洁并干燥样品表面,避免污染物或潮湿影响测试结果。
根据材料类型(如漆包线、云母片、碳化硅)选择电极夹具。
设备配置
使用电压击穿试验仪(如BDJC-50KV型号),支持交流/直流0-150kV测试范围。
串联电压/电流表监测实时数据,配置过流保护及门联锁装置保障安全。
参数设置与执行
按标准设置升压速率(如100-500V/s)、电压类型(工频/直流)及环境温湿度。
逐步升压至击穿,记录临界电压值并重复测试取平均值。三、合规性验证目标
安全性能验证
确定绝缘材料的击穿场强(单位厚度耐压能力),防止设备因绝缘失效引发火灾或短路。
检测潜在缺陷(如漆膜针孔、杂质),确保产品无局部绝缘薄弱点。
标准符合性
验证是否符合IEC 60851-5(漆包线)、UL 1449(电气设备)等行业准入要求。
通过加速老化测试(高温/高湿)模拟长期使用场景,评估材料耐久性。四、典型应用场景
漆包线:测试绝缘层极限电压(如10kV以上),优化涂漆工艺并筛选合格产品。
云母片:通过工频击穿试验(200kV)验证高温环境下的绝缘可靠性。
碳化硅(SiC):评估其在高压电力电子设备中的击穿电压稳定性。五、安全防护措施
操作规范:穿戴绝缘手套、护目镜,保持安全距离防止电弧伤害。
设备维护:定期校准仪器,测试后手动放电避免残余电压风险。
应急处理:配置紧急停机按钮及急救设备,确保突发状况可快速响应。六、测试报告与改进
记录击穿电压、击穿位置及环境参数,分析数据是否符合设计预期。
通过对比不同工艺或材料的测试结果,优化生产流程并推动技术创新。
通过上述流程,击穿电压测试可有效保障产品安全合规性,同时为电气设备长期稳定运行提供科学依据

报价:¥52000
已咨询27次高频介电常数测试仪
报价:¥50000
已咨询16次高频介电常数测试仪
报价:¥45000
已咨询12次高频介电常数测试仪
报价:¥450000
已咨询14次高频介电常数测试仪
报价:¥50000
已咨询20次高频介电常数测试仪
报价:¥45000
已咨询23次薄膜全自动介电常数测试仪
报价:¥45000
已咨询13次高频介电常数测试仪
报价:¥45000
已咨询35次高频介电常数测试仪
报价:面议
已咨询1507次
报价:¥38000
已咨询58次介电击穿强度测定仪
报价:¥38000
已咨询94次介电击穿强度测定仪
报价:¥20000
已咨询160次体积表面电阻率测定仪
报价:¥19998
已咨询86次绝缘漆体积表面电阻系数测定仪
报价:¥38000
已咨询35次绝缘漆漆膜电压击穿试验仪
报价:¥16000
已咨询438次GDW-250-高低温试验台
报价:¥85000
已咨询89次橡胶绝缘电阻测试仪
绝缘材料电气强度测试仪产品型号:BDJC-10KV、BDJC-50KV、BJC-100KV 产品品牌:北京北广精仪 控制方式:计算机控制 符合标准:GB/T1408、ASTM D149、IEC60243-1等
自动介电常数测试高分辨:10.1英寸电容式触摸屏,分辨率1280*800 点测、列表扫描、图形扫描、等效电路分析、晶振分析 五种测试方式 1601点多参数列表扫描功能 基本阻抗精度:典型值≤±0.045%
固体绝缘材料介电损耗测试仪工作频率范围是20Hz~1Mhz 2Mhz 5Mhz(选配), 三种选项它能完成工作频率内对绝缘材料的相对介电常数(ε)和介质损耗角 (D或tanδ)变化的测试。
电容损耗分析仪由高频阻抗分析仪、测试装置,标准介质样品组成,能对绝缘材料进行 高低频介电常数(ε)和介质损耗角(D或tanδ) 的测试。它符合国标GB/T 1409-2006,美标ASTM D150以及IEC60250规范要求。
宽频介电特性分析性能特点 测试频率:10Hz-130MHz 高精度:宽带自动调零自动平衡电桥技术,四端对测试配置 高稳定性和一致性 高速度:达2.5ms的测试速度 高分辨:10.1英寸电容式触摸屏,分辨率1280*800
陶瓷材料介质损耗测试仪具有多种功能和更高测试频率的新型LCR数字电桥,体积小,紧凑便携,便于上架。本系列仪器基本精度为0.05%,测试频率高500kHz及10mHz的分辨率,4.3寸的LCD屏幕配合中英文操作界面,操作方便简洁。集成了变压器测试功能,提高了测试效率。仪器提供了丰富的接口,能满足自动分选测试,数据传输和保存的各种要求。测量无源器件的误差低至0.05%,仪器易于,安装、调整和校准都非常快捷,是进货检验,质量控制,自动化测试等应用的理想选择。
ASTM D150标准设备具有多种功能和更高测试频率的新型LCR数字电桥,体积小,紧凑便携,便于上架。本系列仪器基本精度为0.05%,测试频率高500kHz及10mHz的分辨率,4.3寸的LCD屏幕配合中英文操作界面,操作方便简洁。集成了变压器测试功能,提高了测试效率。仪器提供了丰富的接口,能满足自动分选测试,数据传输和保存的各种要求。测量无源器件的误差低至0.05%,仪器易于,安装、调整和校准都非常快捷,是进货检验,质量控制,自动化测试等应用的理想选择。
介质损耗角测试由高频阻抗分析仪、测试装置,标准介质样品组成,能对绝缘材料进行 高低频介电常数(ε)和介质损耗角(D或tanδ) 的测试。它符合国标GB/T 1409-2006,美标ASTM D150以及IEC60250规范要求。