FireSting O2作为氧气测量的革命性技术,特别适合光合放氧、土壤微生态研究的测量。由德国Pyro Science公司研发的紧凑型光纤式氧气测量仪FireSting O2具备极高的测量精度,它可以通过USB连接PC控制软件进行单独操作。也可以连接到MINI-PAM-II同步测量氧气释放和叶绿素荧光。 | ![]() | ||||||||
| 多种可选探头,可灵活满足各种O2测量的需要,可用于容器内、小瓶内及流动相的O2浓度测量。针状探头还可深入藻组织内部测量O2浓度的分布。 | ![]() | ||||||||
应用实例:蓝光版MINI-PAM-II同时记录小球藻叶绿素荧光和氧气释放 | |||||||||
| |||||||||
A:图中展现的是小球藻在12个光强,每级光强梯度照射5min表现出来的调制叶绿素荧光强度(红线)与氧气浓度(蓝线)变化。这一系列的光强梯度的光强(PAR)近似于指数增大。从左到右,Y轴分别代表光强μmolm-2s-1,荧光强度(相对强度,无单位),相对氧气饱和度(100%饱和 = 273 μM),Fm和Fm’水平由紫色圆点表示,Fo和F水平由绿色圆点表示。 B:相对电子传递速率(红色的符号和线)与光系统II量子ΦPSII以及PAR成相关,ΦPSII由图A中的Fm和Fm’计算而来(参考Genty et al. 1989)。氧气(蓝线)为图A中曲线的一阶导数,与每分钟相对氧气饱和度的变化相对应,浅蓝色符号表示相应光强梯度下3分钟内相对氧气饱和度的测量数据。 设置: 用MINI-PAM-II/B测量悬浮样品室KS-2500内的的小球藻,将一个连接到血氧计的针形opti-cal氧气传感器从侧面的一个孔插入悬浮样品室KS-2500,使用一个新的转接器将血氧计和MINI-PAM-II/B连接在一起,氧气和荧光的数据同步记录。 意义: 该装置实现了叶绿素荧光和氧气浓度的同步记录,从荧光数据中我们可以得到光合线性电子传递速率,但是氧气浓度的变化受氧气释放和和消耗的双重影响,因此,同步测量电子传递速率和氧气的可以用于深入研究光合作用,光呼吸,暗呼吸之间的关系。 | |||||||||
| |||||||||
| |||||||||
报价:面议
已咨询149次植物光谱分析
报价:面议
已咨询183次热分析联用仪
报价:面议
已咨询159次热分析联用仪
报价:面议
已咨询3040次总有机碳TOC分析仪
报价:面议
已咨询178次热分析联用仪
报价:面议
已咨询5524次其它热分析仪
报价:面议
已咨询183次热分析联用仪
报价:面议
已咨询76次便携式气体检测仪
RedEdge-P Triple成像系统同时捕获多达15个波段信息,支持多种高分辨率输出,如RGB、作物活力指数和复合图(NDVI、NDRE、CIR),以及高分辨率全色图。具备全景锐化功能,可在120m高度实现2 cm分辨率,远超卫星影像10 m分辨率。
可实现植物光合速率、生理指标和环境因子的连续监测
组培是指在人工培养基上,离体培养植物的器官、组织、细胞和原生质体,并使其生长、增殖、分化以及再生植株的新型科学技术。其实植物体的每一个细胞都携带有一套完整的基因组,并具有发育成完整植株的潜在能力。
Viscon的自动化种子加工解决方案,可简化多种大田作物种子的自动化采样与 DNA 分析制备流程。通过自动化处理单粒种子,确保基因分型制备的精准性,同时维持质量控制标准。
SciSpinner Max 3D是一款专为生命科学、生物制药、材料科学、植物科学等实验室打造的双轴3D回旋器,以双轴独立旋转技术为核心,360°无死角抵消重力矢量,提供贴近太空的无重力干扰环境。高性价比打通基础科研与工业应用,适配从样品培养到机制研究的全场景需求。
协作运维机器人由机器人本体、工业机械臂以及手持智能遥控终端组成。主要应用领域是特高压电站运维领域,为运维人员提供快速、准确的变电站设备动态,解决由于人员专业水平差异而导致变电站巡检质量不足的问题,相较于传统的人工巡检操作,能够显著降低大量人力与时间成本,较大程度地解决“人站比”不足的问题,使得环境日益凸显的矛盾得以缓解。
光伏运维机器人由机器人本体、升降云台、可翻转除草模块和手持智能遥控终端组成。主要用于集中式光伏电站的运维领域,取代运维人员进行光伏板巡检、除草等重复性任务。
基于“AI+"计划,“山猫”在具身智能方面的技术积累的同时,基于”山猫“的形态针对性进行特色化适配。