
| 型号 | WK-2525 | WK-2535W WK-2535 | WK-2555 WK-2555W | WK-2575W WK-2575W | WK-25100W WK-25100 | WK-25150W WK-25150 | |
| 介质温度范围 | -25℃~+200℃ | ||||||
| 控制系统 | 前馈PID ,无模型自建树算法,PLC控制器 | ||||||
| 温控模式选择 | 物料温度控制与设备出口温度控制模式 可自由选择 | ||||||
| 温差控制 | 设备出口温度与反应物料温度的温差可控制、可设定 | ||||||
| 程序编辑 | 可编制10条程序,每条程序可编制40段步骤 | ||||||
| 通信协议 | MODBUS RTU 协议 RS 485接口 | ||||||
| 外接入温度反馈 | PT100或4~20mA或通信给定(默认PT100) | ||||||
| 温度反馈 | 设备导热介质 进口温度、出口温度、反应器物料温度(外接温度传感器)三点温度 | ||||||
| 导热介质温控精度 | ±0.5℃ | ||||||
| 反应物料温控精度 | ±1℃ | ||||||
| 加热功率 kW | 2.5 | 3.5 | 5.5 | 7.5 | 10 | 15 | |
| 制冷量 kW AT | 200℃ | 2.5 | 3.5 | 5.5 | 7.5 | 10 | 15 |
| 100℃ | 2.5 | 3.5 | 5.5 | 7.5 | 10 | 15 | |
| 50℃ | 2.5 | 3.5 | 5.5 | 7.5 | 10 | 15 | |
| 20℃ | 2.5 | 3.5 | 5.5 | 7.5 | 10 | 15 | |
| -5℃ | 2 | 3 | 4.5 | 6.6 | 8 | 12 | |
| -20℃ | 1 | 1.8 | 2.8 | 3.8 | 4.6 | 7 | |
| 流量压力 max L/min bar | 20 | 35 | 35 | 50 | 75 | 110 | |
| 2 | 2 | 2 | 2 | 2.5 | 2.5 | ||
| 压缩机 | 三菱 | 艾默生谷轮/丹佛斯涡旋压缩机 | |||||
| 膨胀阀 | 丹佛斯/艾默生热力膨胀阀 | ||||||
| 蒸发器 | 丹佛斯/高力板式换热器 | ||||||
| 操作面板 | 7英寸彩色触摸屏,温度曲线显示、记录 | ||||||
| 安全防护 | 具有自我诊断功能;冷冻机过载保护;高压压力开关,过载继电器、热保护装置等多种安全保障功能。 | ||||||
| 密闭循环系统 | 整个系统为全密闭系统,高温时不会有油雾、低温不吸收空气中水份,系统在运行中不会因为高温使压力上升,低温自动补充导热介质。 | ||||||
控制原理介绍:
1、改变控制设定值的方法,能够尽快的响应过程中的系统滞后,得到zui小的系统过冲。控制由两组PID(每组PID是可变的)控制回路构成,这两组控制回路称为:主回路和从回路,主回路的控制输出作为从回路的设定值。系统采用带有前馈PV,主控回路的PID运行结果的输出与前馈PV信号复合后作为从控制回路的设定值,通过这样对温度变化梯度控制,保证系统控温精度。
2、专门设计的滞后预估器(无模型自建树算法)产生一个代替过程变量y(t))的动态信号yc(t)来作为反馈信号。对控制器产生一个e(t)信号 ,使控制器预判控制作用没有大的滞后,,这样控制器总是能够产生一个合适的控制信号。也就是说,即使存在大滞后,这个动态信号yc(t)也能保持反馈回路正常工作。而用一般PID来控制具有显著时间滞后的过程,则控制器输出在滞后时间内由于得不到合适的反馈信号保持增长,从而导致系统响应超调大甚至使系统失控。
3 、通过三点采样(物料温度点、温控系统出口温度、温控系统进口温度), 通过我们公司自创无模型自建树算法和一般抗滞后串算法相结合。
报价:面议
已咨询375次制冷加热控温系统
报价:面议
已咨询497次制冷加热控温系统
报价:面议
已咨询2458次制冷加热控温系统
报价:面议
已咨询499次制冷加热控温系统
报价:面议
已咨询368次制冷加热控温系统
报价:面议
已咨询485次高低温一体机
报价:面议
已咨询3067次VIVO加热制冷/恒温循环器
报价:面议
已咨询629次JULABO加热制冷循环器
超低温冷冻机的制冷系统基本采用复叠式制冷的工作原理,采用两台全封闭压缩机作为高、低温压缩机使用。低温蒸发器的紫铜管以盘管形式直接盘附于内箱体外侧,并用导热胶泥填堵于盘管与箱壁之间的缝隙中,以增加热交换效果。冷凝蒸发器为壳管式结构,内部为四管螺纹型紫铜管,采用逆流式热交换方式。
超低温冷冻机的制冷系统基本采用复叠式制冷的工作原理,采用两台全封闭压缩机作为高、低温压缩机使用。低温蒸发器的紫铜管以盘管形式直接盘附于内箱体外侧,并用导热胶泥填堵于盘管与箱壁之间的缝隙中,以增加热交换效果。冷凝蒸发器为壳管式结构,内部为四管螺纹型紫铜管,采用逆流式热交换方式。
超低温冷冻机的制冷系统基本采用复叠式制冷的工作原理,采用两台全封闭压缩机作为高、低温压缩机使用。低温蒸发器的紫铜管以盘管形式直接盘附于内箱体外侧,并用导热胶泥填堵于盘管与箱壁之间的缝隙中,以增加热交换效果。冷凝蒸发器为壳管式结构,内部为四管螺纹型紫铜管,采用逆流式热交换方式。
超低温冷冻机的制冷系统基本采用复叠式制冷的工作原理,采用两台全封闭压缩机作为高、低温压缩机使用。低温蒸发器的紫铜管以盘管形式直接盘附于内箱体外侧,并用导热胶泥填堵于盘管与箱壁之间的缝隙中,以增加热交换效果。冷凝蒸发器为壳管式结构,内部为四管螺纹型紫铜管,采用逆流式热交换方式。
超低温冷冻机的制冷系统基本采用复叠式制冷的工作原理,采用两台全封闭压缩机作为高、低温压缩机使用。低温蒸发器的紫铜管以盘管形式直接盘附于内箱体外侧,并用导热胶泥填堵于盘管与箱壁之间的缝隙中,以增加热交换效果。冷凝蒸发器为壳管式结构,内部为四管螺纹型紫铜管,采用逆流式热交换方式。
超低温冷冻机的制冷系统基本采用复叠式制冷的工作原理,采用两台全封闭压缩机作为高、低温压缩机使用。低温蒸发器的紫铜管以盘管形式直接盘附于内箱体外侧,并用导热胶泥填堵于盘管与箱壁之间的缝隙中,以增加热交换效果。冷凝蒸发器为壳管式结构,内部为四管螺纹型紫铜管,采用逆流式热交换方式。
超低温冷冻机的制冷系统基本采用复叠式制冷的工作原理,采用两台全封闭压缩机作为高、低温压缩机使用。低温蒸发器的紫铜管以盘管形式直接盘附于内箱体外侧,并用导热胶泥填堵于盘管与箱壁之间的缝隙中,以增加热交换效果。冷凝蒸发器为壳管式结构,内部为四管螺纹型紫铜管,采用逆流式热交换方式。
超低温冷冻机的制冷系统基本采用复叠式制冷的工作原理,采用两台全封闭压缩机作为高、低温压缩机使用。低温蒸发器的紫铜管以盘管形式直接盘附于内箱体外侧,并用导热胶泥填堵于盘管与箱壁之间的缝隙中,以增加热交换效果。冷凝蒸发器为壳管式结构,内部为四管螺纹型紫铜管,采用逆流式热交换方式。