仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

产品中心

当前位置:仪器网>产品中心> 北京北广精仪仪器设备有限公司>GB1410电阻率测试仪>绝缘漆体积表面电阻系数测定仪>薄膜交流电阻率测试仪
收藏  

薄膜交流电阻率测试仪

立即扫码咨询

联系方式:400-855-8699转8003

联系我们时请说明在仪器网(www.yiqi.com)上看到的!

扫    码    分   享
为您推荐

产品特点

薄膜交流电阻率测试仪测试电压:通常提供多种测试电压选项,如 50V、100V、250V、500V、1000V、2500V、5000V 等。自动量程切换:部分型号支持自动量程切换,方便用户操作。

详细介绍

薄膜交流电阻率测试仪仪器特点:

自动扫描 带设置记忆电压记忆功能开机一键出结果显示电阻和电阻率

可远程视频验机  一比一按美国安捷伦做对比 一键出结果 精度可达1%  格力 华为的选择主要参数

• 显示采用4.3寸高分辨率TFT屏显示,操作简单

• 机身小巧,功能强大测试性能

• 回读电压精度0.5%±1V

• 绝缘电阻大精度 1%快速测试

• 小测试周期仅需200ms恒压测试

• 采用恒压测试法快速测量绝缘电阻丰富的接口配置

• HANDLER口

• RS-232接口

• 以太网接口

• U盘接口

•可连接上位机软件操作

供电

• 110v~240 V双模式供电

• 电源频率47Hz~63Hz

• 大功耗 50W

微信图片_20240913142342.jpg

薄膜交流电阻率测试仪

技术指标

参数

一般功能:

测量参数  绝缘电阻 R,泄漏电流 I,表面电阻 Rs,体积电阻 Rv

测试电压 1-1000v  1000个档位可以调

测试范围  电阻5*102Ω~1*10 16Ω(超出显示电流大换算可到20次方), 电阻率高可达到1022Ω.cm

测量方式:手动/自动两种

界面语言选择:英文/中文 两种

显示位数:4/5位  两种选择

测量模式:三种

测试速度可选择  快速 5 次/秒,慢速 1 次/秒,两种

回读电压精度  0.5%±1V

测试特点:带设置记忆功能 开机一键测试出结果 不用反复设置

可设定测量延时和放电延时

量程超限显示  量程上超

输入端子  香蕉插头,BNC 插头

精度保证期  1年 根据计量证书有效期

操作温度和湿度 0℃到40℃80%RH以下(无凝结)

存储温度和湿度 -10℃到60℃ 80%RH以下(无凝结)

操作环境  室内,高海拔2000m

电源  电压:110V/ 220V AC 频率:47Hz/63Hz 两种供电模式

功耗  50 W

尺寸  约 331 mm x 329 mm x 80 mm

重量  约 4.1kg图7阻燃试验装置

5.6.2 火焰应调高至150~180mm,火焰温度为(960士60)℃。待火焰温度稳定时,将软管置于火焰

中燃烧60 s,然后移开酒精喷灯,测定被测试件的有焰燃烧或无焰燃烧时间。

5.6.3每组软管的平均有焰燃烧和无焰燃烧时间不应大于30s;其中任一软管有焰燃烧和无焰燃烧时

间不应大于60s。试验结果的后数值以测得的三个试件的算术平均值表示。

5.6.4试验燃料为95%工业用乙醇和5%甲醇的混合物。

5.6.5试验时,试验箱内的风机或空气流动应以不影响火焰燃烧变化为前提,否则试验时应关掉

风机。图8抗静电试验用电极和接触片

5.7.4 接触片由25mm宽的锡箔片制成,相距100mm对称放置,锡箔片与软管周围全部接触,接触

片两个自由端用夹子固定。

5.7.5软管在室温(25±5)℃、相对湿度60%~70%条件下放置不少于2h,然后在外表面干燥的条件

下进行试验。

5.7.6测量仪的导线分别与两个接触片连接,然后进行电势试验。

5.7.7软管放在聚乙烯或其他绝缘材料支撑板上,在软管和板之间产生1X10”Ω以上的电阻。

5.7.8

仪器导线不应与试件和其他零件相互接触,但与导线连接除外。

5.7.9每件软管各测一次,记录每次测得的数值,试验结果以测得的三个试件的算术平均值表示,单位

为欧姆(Ω)。

5.7.10两极之间测出的电阻不应超过25X10*/d (Ω),d为软管公称外径,单位为毫米(mm).

5.8外覆层耐磨损试验

软管的外覆层耐磨损试验见附录A.

6检验规则

6.1检验类型

6.1.1软管检验分为出厂检验和型式检验。

6.1.2软管出厂应进行出厂检验,检验由制造厂质量检验部门进行;用户验收按出厂检验项目进行。A.1取一段150mm长的软管安装在耐磨损试验机中(见图A.1),应能使磨具沿试件作100mm长的

正弦波往复运动,频率为1.25Hz(每个循环行程等于200mm)。在经过2000个行程磨损后造成的试

件质量损失不应超过1g.

磨具移动装置应符合以下要求:

a)移动长度的中点应与组装好的试件及芯轴的中点相重合;

b)磨具和试件的轴线应在中点处互相垂直;

c)移动平面应与试件的纵向轴线相平行;

d)芯轴长为(150士0.5)mm,试件应紧密地固定于其上,确保试件和芯轴之间无轴向移动或径向

转动。试验应一直进行到完成规定的循环次数为止。

6.1.3型式检验由国家授权的监督检验部门进行。

6.1.4凡属下列情况之一,应进行型式检验:

a)新产品鉴定定型时或老产品转厂试制时;

b)正式生产后,如产品设计、结构、材料或工艺有较大改变,可能影响产品性能时;

c)产品停产3年以上再次生产时;

d)连续生产的产品至少每5年应进行一次;

e)国家质量监督部门和国家煤矿安全监察部门提出要求时。

6.2检验项目

出厂检验和型式检验项目和要求见表5。

5.7抗静电试验

5.7.1宜使用具有500V额定开路(直流)电压、能测定绝缘电阻的特定仪器,也可使用其他任何能提

供结果相似的仪器。试验时,施给软管的电压不应低于40V。测试仪表应具有足够精度(可将仪器电

压选择在10V,将标准电阻1X10Ω和仪器相接,观察1h,变化应在读数士2%以内,时间响应应小于

30s)以保证电阻测量误差在±10%范围内。试件清耗的电能不应超过3W.

5.7.2软管长度为300mm。软管的外表面用蘸有蒸馏水的干净绸布或消毒纱布清洗,再用洁净布擦

干,放置在干燥处24h以上。

5.7.3围绕软管周围用胶体石墨涂上两个平行圈,或涂上一种适合导电的银漆,每圈宽25mm,两个

胶体石墨电极间的距离为100mm。接通电极的石墨表面应光滑平坦,在电极的任何两点间的大电

阻不超过1X10°Ω6.3.1高阻计仪器准备

表面电阻与体积电阻的换算关系

一、基础定义

体积电阻率(ρv)
表示材料单位体积对电流的阻抗,计算公式为:
ρv=RvhA
其中:

Rv 为体积电阻(Ω),

A 为电极有效面积(m²),

ℎ为材料厚度(m)‌。

表面电阻率(ρs)
表示材料表面单位面积的阻抗,计算公式为:
ρs=Rs⋅ln(d2/d1)2π
其中:

Rs 为表面电阻(Ω),

1d1 为测量电极直径,

2d2 为保护电极内径(单位需统一)‌。

二、换算条件与公式

薄膜材料的直接关系
当材料为均匀薄膜时,体积电阻率与表面电阻率可通过厚度 t 关联:
ρs=v
即表面电阻率等于体积电阻率除以薄膜厚度(单位需一致)‌。

实际应用中的参数要求

换算需已知材料厚度 t 和电极几何参数(如 1d1、2d2 或 A)‌。

若已知体积电阻Rv,需结合电极面积 A 和厚度 ℎh 计算 ρv,再通过厚度 t 转换为表面电阻率 ρs ‌。

三、操作步骤示例

体积电阻转表面电阻率

步骤1:测量体积电阻 Rv,记录电极面积 A 和材料厚度 ℎh ‌。

步骤2:计算体积电阻率 =ρv=RvhA ‌。

步骤3:若材料为薄膜,直接通过 =ρs=v 得到表面电阻率(ℎt=h)‌。

表面电阻转体积电阻率

步骤1:测量表面电阻 Rs,记录电极参数 1d1、2d2 ‌。

步骤2:若已知薄膜厚度 t,通过 =ρv=ρst 反推体积电阻率‌。

四、注意事项

单位一致性‌:确保所有参数(如厚度、面积、电阻值)单位统一(如米、平方米、欧姆)‌。

材料均匀性‌:公式仅适用于均匀材料,非均匀材料需额外修正‌。

测量误差‌:电极接触不良或环境温湿度变化可能导致换算误差,建议多次测量取均值‌。

通过上述关系和公式,可实现表面电阻与体积电阻的相互换算,但需严格遵循测量规范并验证参数准确性‌

表面电阻测试仪校准注意事项

一、校准前准备

环境控制

确保校准环境温度稳定在 ‌20-25℃‌、湿度控制在 ‌40%-60%‌,仪器需提前静置 ‌30分钟以上‌ 以平衡温湿度‌。

避免在强电磁场、振动或粉尘环境下操作,防止干扰校准精度‌。

工具与设备检查

使用覆盖 ‌10³-10¹²Ω‌ 范围、精度 ‌≥1%‌ 的标准电阻器,并确保其通过有效期内的认证‌。

检查测试仪电源、电极连接线是否完好,避免接触不良或破损导致校准误差‌。

二、校准操作注意事项

调节校准器的操作规范

校准前需 ‌断电操作‌,打开表盖时避免拉扯内部电路板连。

调节电路板上的 ‌三个校准调节器‌(温湿度、阻抗、温度补偿)时,使用专用小螺丝刀,遵循 ‌顺时针增大数值、逆时针减小‌ 的原则‌。

校准验证流程

连接标准电阻器后,需多次通电对比 ‌LCD显示值‌ 与标准值差异,每次调节后需 ‌断电再重启验证‌,避免电路过载‌。

校准完成后,需用已知阻值的标准样品复测,确保误差在 ‌±1%‌ 范围内‌。

关键操作禁忌

禁止带电插拔连接线或调节校准器,防止短路或元件损坏‌。

避免用手直接触碰电极或电路板,操作时佩戴 ‌防静电手套‌ 以减少干扰‌。

三、校准后处理

仪器恢复与记录

校准后需 ‌密封表盖并拧紧螺丝‌,防止灰尘或潮气侵入‌。

记录校准日期、环境参数、标准值及实测数据,便于后续性能追踪‌。

异常情况处理

若校准后仍存在明显偏差,需排查标准电阻器精度或电极接触问题,必要时联系专业机构维修‌。

长期未使用的仪器需定期 ‌充放电维护电池‌,避免电量不足影响校准稳定性‌。

四、安全与周期管理

安全防护‌:校准过程中远离高压电极,测试前确保设备完全放电‌。

校准周期‌:建议每 ‌6个月‌ 或按制造商要求定期校准,高频率使用环境下可缩短至 ‌3个月‌‌。

通过规范操作和严格遵循上述事项,可有效保障表面电阻测试仪的校准精度及长期可靠性。

体积表面电阻率测试仪校准指南

一、体积表面电阻率测试仪校准前准备

校准工具

准备标准电阻器(范围覆盖10³-10¹²Ω,精度1%)‌,高精度温湿度计及恒温恒湿环境控制设备‌。确认测试仪电量充足,并检查电极、连接线是否完好‌。

环境设置

校准环境需保持温度20-25℃、湿度40%-60%,仪器需静置至少30分钟以平衡温湿度‌。

避免强电磁干扰或振动环境‌。

二、体积表面电阻率测试仪校准步骤

仪器拆装与连接

打开测试仪表盖,避免损坏内部电路板连线‌。

将鳄鱼夹与香蕉插头连接,插入仪器对应接口,另一端连接标准电阻器两端‌。

调节校准点

定位电路板右下方三个校准调节器:

顶部调节器‌:控制湿度测量校准‌;

中间调节器‌:调整阻抗校准‌;

底部调节器‌:通过小螺丝刀调节温度补偿‌。

调节方向:顺时针旋转为增大数值,逆时针为减小‌。

校准操作

按下电源开关,对比LCD显示的温湿度、电阻值与标准值差异‌。

释放电源开关,微调对应校准调节器,重复通电验证直至显示值与标准值一致‌。

若需重复校准,需断电后再调节,避免电路过载‌。

三、体积表面电阻率测试仪校准后验证与记录

功能验证

校准完成后,盖上表盖并拧紧螺丝,通电检查仪器是否正常运行‌。

使用已知电阻值的标准样品复测,确保误差在允许范围内(如±1%)‌。

记录管理

填写校准记录表,包括校准日期、环境参数、标准值、实测值及操作人员‌。

定期跟踪仪器性能,建议每6个月或按制造商要求进行周期性校准‌。

四、体积表面电阻率测试仪注意事项

操作时佩戴防静电手套,避免触碰高压电极或内部电路‌。

校准过程中禁止带电插拔连接线,防止短路或损坏仪器‌。

若校准后仍存在异常偏差,需排查标准电阻器精度或联系专业机构维修‌。

通过规范校准流程,可确保测试仪长期保持测量精度,满足防静电材料、电子元件等场景的检测需求‌

体积表面电阻率测试仪的保养与使用指南

一、体积表面电阻率测试仪保养要点

清洁维护

使用柔软干布或专用清洁剂擦拭仪器表面和测量区域,避免使用含酸碱的化学溶剂‌.清洁后确保仪器完全干燥再存放,防止潮气损害内部元件‌。

存放环境

存放在干燥、通风良好的环境中,避免高温、高湿或腐蚀性气体‌。

长期不使用时需取出电池,并对仪器进行密封防潮处理‌。

定期校准

根据制造商建议周期校准,使用标准样品验证准确性,或联系专业人员操作‌。

校准后记录数据,便于追踪仪器性能变化‌。

电气与机械检查

定期检查电缆连接是否牢固,避免松动导致数据错误或故障‌。

关注机械部件(如电极、夹具)的磨损情况,及时更换损坏零件‌。

二、体积表面电阻率测试仪使用规范

环境控制

测试环境温度宜保持稳定(推荐20-25℃),湿度控制在40%-60%‌。

避免在强电磁场、振动或电焊作业附近使用,防止干扰测试结果‌。

样品准备

确保样品表面清洁、干燥,无油污、灰尘或褶皱,必要时使用软布或温和溶剂清洁‌。

样品尺寸需适配电极要求,薄膜类材料需平整放置,避免接触不良‌。

体积表面电阻率测试仪‌操作步骤

开机后选择对应模式(体积/表面电阻率),按标准设置电压(通常数百至数千伏)和测试时间‌。

正确连接电极:表面电阻测试时,环形电极需紧密贴合样品,间距符合规范(如10cm)‌。

测试过程中避免触碰电极或高压部分,防止触电或数据偏差‌。

体积表面电阻率测试仪‌安全与后续处理

测试前确认被测设备已断电并完全放电,防止残余电荷影响结果或引发危险‌。

测试结束后先断开高压,再关闭电源,清洁电极并记录数据‌。

三、体积表面电阻率测试仪注意事项

避免碰撞或剧烈震动,运输时使用防震包装‌。

电池维护:电量不足时及时充电,长期闲置需定期充放电以保持电池活性‌。

若测试值异常(如超出10⁶-10⁹Ω范围),需排查环境、样品或仪器故障,必要时联系售后‌。

通过规范操作和定期维护,可有效延长表面电阻测试仪的使用寿命,并确保测量数据的准确性。

 003.png

体积表面电阻率测试仪的测量场景及适用行业如下:

一、电子元器件制造

PCB基板检测‌

验证环氧树脂基板体积电阻率是否满足>10¹⁶Ω标准,防止电路短路‌

检测硅胶封装层表面电阻率,避免光电二极管暗电流干扰信号传输‌

电容器与密封材料测试‌

评估介质材料泄漏电流风险,确保电容器绝缘性能‌

二、新能源领域

锂电池隔膜质检‌

同步验证隔膜的高体积电阻率(阻断电子)与低表面电阻率(导通离子)平衡性‌

光伏材料研发‌

测试太阳能电池封装材料的抗静电能力,提升长期稳定性‌

三、航空航天与材料

复合绝缘材料认证‌

碳纤维增强树脂需通过ASTM D257标准测试,支持一键生成报告‌

极端环境材料评估‌

验证耐高温/耐辐射材料的电阻率稳定性,满足级防护需求‌

四、电力与绝缘材料生产

高压电缆与护套材料检测‌

验证塑料、橡胶等绝缘材料的体积电阻率,确保耐电压击穿性能‌

液体与粉体材料测试‌

检测树脂、导电油墨等材料的电阻率,专用电极设计避免漏液误差‌

五、半导体与微电子

晶圆加工与封装‌

测试切割胶带和封装材料的表面抗静电能力,防止器件损伤‌

微电流测量‌

实现0.1fA级微弱电流检测,用于半导体器件与光电元件研发‌

六、防静电与纺织品

防静电产品认证‌

检测防静电服、导电纤维的表面电阻率,符合GB 12014等标准‌

工业环境安全监测‌

验证计算机房防静电地板、化工防爆设备的静电消散性能‌

七、科研与教育

材料改性研究‌

实时监测石墨烯等纳米填料对材料电阻率的影响曲线‌

新型材料开发‌

支持固体、液体、粉体全材料类型测试,覆盖实验室与生产线场景‌

以上应用场景及行业均基于当前(2025年)主流标准及技术需求,满足GB/T 1410、ASTM D257等15+国际/国家标准‌。

电压击穿测试仪,体积表面电阻率测试仪,介电常数介质损耗测试仪,漏电起痕试验仪,耐电弧试验仪,TOC总有机碳分析仪,完整性测试仪,无转子硫化仪,门尼粘度试验机,热变形维卡温度测定仪,简支梁冲击试验机,毛细管流变仪,橡胶塑料滑动摩擦试验机,氧指数测定仪,水平垂直燃烧试验机,熔体流动速率测定仪,低温脆性测试仪,拉力试验机,海绵泡沫压陷硬度测试仪,海绵泡沫落球回弹测试仪,海绵泡沫压缩永九变形试验仪

 

 

后缀:关键词 体积表面电阻率测试仪适用于哪些行业

 

体积表面电阻率测试仪是一种用于测量材料绝缘性能的精密仪器,广泛应用于多个行业,主要涉及对材料电绝缘性能有严格要求的领域。北京北广精仪仪器设备有限公司声场的体积表面电阻率测试仪主要用于以下主要适用行业及具体应用场景:

 

1. 电子与半导体行业

  应用:测试PCB基板、绝缘薄膜、封装材料、半导体晶圆等的电阻率,确保其绝缘性能满足电子元件防短路、防漏电的要求。

  案例:评估手机电路板在高湿度环境下的绝缘可靠性。

 

2. 电力与能源行业

应用:检测电缆绝缘层、变压器油、复合绝缘子等材料的电阻率,保障高压设备的安全运行。

案例:高压电缆出厂前的绝缘性能验证。

 

3. 航空航天与汽车制造

   应用:评估飞机复合材料、汽车线束、电池隔膜等材料的电绝缘性,防止静电积聚或电磁干扰。

   案例:新能源汽车电池组绝缘材料的质量控制。

 

4. 科研与新材料开发

   应用:研究石墨烯、纳米涂层等新型材料的导电/绝缘特性,优化材料配方。

   案例:柔性显示技术中透明导电薄膜的研发测试。

 

5. 医疗设备与生物材料

   应用:检测医用塑料、导管、植入材料的绝缘性能,确保患者安全。

   案例:心脏起搏器绝缘外壳的生物兼容性测试。

 

6. 塑料与橡胶工业

   应用:质量控制环节中测量工程塑料、硅橡胶等材料的电阻率,用于防静电包装或绝缘部件生产。

   案例:防静电托盘用于芯片运输前的电阻率达标测试。

 

6. 军事与国防

   应用:评估隐身涂层、雷达吸波材料等的电学性能。

 

7  案例:无人机复合材料的电磁屏蔽效能测试。

 

8. 建材与家居行业

   应用:检测地板、墙板的防静电性能(如数据中心地板)或绝缘性能(如电工套管)。

   案例:洁净室防静电地板的验收测试。

 

9.能源存储(电池与电容器)

   应用:测量隔膜、电解质的电阻率,优化锂电池或超级电容器的性能。

   案例:锂电隔膜孔隙率对离子传导性的影响研究。

 

10. 质量控制与认证机构

   应用:作为第三方检测工具,依据ISO/ASTM标准对材料进行认证(如UL认证、RoHS合规性)。

   案例:出口电子产品的绝缘安全认证测试。

 

 关键测试参数

体积电阻率(Ω·cm):反映材料内部的绝缘性能。

表面电阻率(Ω/sq):评估材料表面的导电/防静电特性。

 

行业标准参考

测试常遵循国际标准如IEC 60093、ASTM D257、GB/T 1410等,确保数据可比性。

 

总之,该仪器是材料电学性能评估的核心设备,覆盖从基础研究到工业生产的全链条需求,尤其在需要高可靠性绝缘或可控导电性的场景中不可或缺。

 

北广精仪的体积表面电阻率测试仪主要用于材料电学性能的检测,其特点通常涵盖以下几个方面。以下分析基于同类仪器的常见特性,具体型号可能存在差异,建议参考官方资料获取准确信息:

 

 核心特点

1. 高精度测量

  采用先进传感器和电路设计,确保在宽阻值范围(如102Ω至1020Ω)内的高精度,适用于绝缘材料、半导体等不同导电性材料。

 

2. 符合国际标准

   遵循ASTM D257、IEC 60093、GB/T 1410等标准,确保测试结果的可比性与权威性。

 

3. 多功能测试模式

   集成体积电阻率与表面电阻率测量功能,部分型号可能支持自动切换测试模式,提升效率。

 

4. 用户友好设计

   直观的按键彩屏操作界面,搭配菜单引导,降低操作门槛。

   数据存储与导出功能,支持USB或计算机连接,便于后续分析。

 

5. 稳定性与抗干扰

   采用屏蔽技术减少环境电磁干扰,温度补偿功能适应不同测试环境,保障数据稳定性。

 

6. 安全保护机制

   过压、过流保护及安全接地设计,防止设备或样品在异常情况下受损。

 

7. 先进的功能操作

  可切换中英文界面 定时充电 和定时放电功能 讯响模式 测量模式

 

 扩展功能(部分型号可能具备)

自动化测试:预设程序自动完成测试流程,减少人为误差。

多量程自动切换:根据被测材料阻值自动调整量程,简化操作。

温湿度监测:内置传感器实时监控环境参数,分析其对电阻率的影响。

校准服务:提供定期校准支持,确保长期测量准确性。

 

应用领域

材料研发:如塑料、橡胶、陶瓷等绝缘材料的电性能评估。

质量控制:电子元件、电缆、薄膜等产品的出厂检验。

科研教育:高校及研究机构进行电介质材料研究。

 

注意事项

操作前需仔细阅读手册,规范电极安装与样品处理。

定期维护与校准,以维持仪器状态。

 

如需特定型号的详细参数,建议直接咨询北广精仪官方渠道获取技术文档。

 

绝缘电阻测量仪1范围

本标准规定了固体绝缘材料体积电阻率和表面电阻率的试验方法。这些试验方法包括对固体绝缘 材料体积电阻和表面电阻的测定程序及体积电阻率和表面电阻率的计算方法。

体积电阻和表面电阻的试验都受到下列因素影响:施加电压的大小和时间;电极的性质和尺寸;在试样处理和测试过程中周围大气条件和试样的温度、湿度。

2规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有 的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究 是否可使用这些文件的新版本。凡是不注日期的引用文件,其新版本适用于本标准。

GB/T 10064—2006 测定固体绝缘材料绝缘电阻的试验方法(IEC 60167 : 1964 JDT)

GB/T 10580—2003 固体绝缘材料在试验前和试验时采用的标准条件(IEC 60212 : 1971,IDT)

IEC 60260 = 1968非注入式恒定相对湿度的试验箱

3定义

下列定义适用于本标准。

3. 1

体积电阻 volume resistance

在试样两相对表面上放置的两电极间所加直流电压与流过这两个电极之间的稳态电流之商,不包 括沿试样表面的电流,在两电极上可能形成的极化忽略不计。

注:除非另有规定,体积电阻是在电化一分钟后测定。

3.2 .

体积电阻率 volume resistivity

在绝缘材料里面的直流电场强度和稳态电流密度之商,即单位体积内的体积电阻。

注:体积电阻率的SI单位是£1 • mo实际上也使用0 • cm这一单位。

3. 3

表面电阻 surface resistance

在试样的其表面上的两电极间所加电压与在规定的电化时间里流过两电极间的电流之商,在两电 极上可能形成的极化忽略不计。

注1:除非另有规定,表面电阻是在电化一分钟后测定。

注2:通常电流主要流过试样的一个表面层,但也包括流过试样体积内的成分。

3.4

表面电阻率 surface resistivity

在绝缘材料的表面层里的直流电场强度与线电流密度之商,即单位面积内的表面电阻。面积的大 小是不重要的。

注:表面电阻率的SI单位是Q。实际上有时也用“欧每平方单位”来表示。

3.5

电极 electrodes

电极是具有一定形状、尺寸和结构的与被测试样相接触的导体。

注:绝缘电阻是加在与试样相接触的两电极之间的直流电压与通过两电极的总电流之商。绝缘电阻取决于试样的 表面电阻和体积电阻(见GB/T 10064—2006).

4意义

4. 1通常,绝缘材料用于将电气系统的各部件相互绝缘和对地绝缘;固侪绝缘材料还起机械支撑作用。 对于这些用途,一般都希望材料具有尽可能高的绝缘电阻,有均匀一致的、得到认可的机械、化学和耐热 性能。表面电阻随湿度变化很快,而体积电阻随温度变化却很慢,尽管其终的变化也许较大。

4.2体积电阻率能被用作选择特定用途绝缘材料的一个参数。电阻率随温度和湿度的变化而显著变 化,因此在为一些运行条件而设计时必须对其了解。体积电阻率的测量常被用于检査绝缘材料生产是 否始终如一,或检测能影响材料质量而又不能用其他方法检测到的导电杂质。

4.3当一直流电压加在与试样相接触的两电极之间时,通过试样的电流会渐近地减小到一个稳定值。 电流随时间的减小可能是由于电介质极化和可动离子位移到电极所致。对于体积电阻率小于 1010 Q • m的材料,其稳定状态通常在一分钟内达到,因此,经过这个电化时间后测定电阻。对于体积电 阻率较高的材料,电流减小的过程可能会持续到几分钟、几小时、几天甚至几星期。因此对于这样的材 料,采用较长的电化时间,且如果合适,可用体积电阻率与时间的关系来描述材料的特性。

4.4由于或多或少的体积电导总是要被包括到表面电导测试中去,因此不能精确而只能近似地测量表 面电阻或表面电导。测得的值主要反映被测试样表面污染的特性,而且试样的电容率影响污染物质的 沉积,它们的导电能力又受试样的表面特性所影响。因此,表面电阻率不是一个真正意义的材料特性, 而是材料表面含有污染物质时与材料特性有关的一个参数。

某些材料如层压材料在表面层和内部可能有很不同的电阻率,因此测量清洁的表面的内在性能是 有意义的。应完整地规定为获得一致的结果而进行清洁处理的程序,并要记录清洁过程中溶剂或其他 因素对于表面特性可能产生的影响.

表面电阻,特别是当它较高时,常以不规则方式变化,且通常非常依赖于电化时间。因此,测量时通 常规定一分钟的电化时间。

5电源

要求有很稳定的直流电压源。这可用蓄电池或一•个整流稳压的电源来提供。对电源的稳定度要求 是由电压变化导致的电流变化与被测电流相比可忽略不计。

加到整个试样上的试验电压通常规定为100 V.250 V.500 va 000 V、2 500 V,5 000 VJO 000 V 和15 000 V。常用的电压是100 V.500 V和1 000 V。

在某些情况下,试样的电阻与施加电压的极性有关。

如果电阻是与极性有关的,则宜加以注明。取两次电阻值的几何平均值(对数算术平均值的反对 数)作为结果。

由于试样电阻可能与电压有依存关系,因此应在报告中注明试验电压值。

6测量方法和精确度

6. 1方法

测量高电阻常用的方法是直接法或比较法。

直接法是测量加在试样上的直流电压和流过它的电流(伏安法)而求得未知电阻。

比较法是确定电桥线路中试样未知电阻与电阻器已知电阻之间的比值,或是在固定电压下比较

附录A给出了描述这些原理的例子。

伏安法需要一适当精度的伏特表,但该方法的灵敏度和精确度主要取决于电流测量装置的性能,该 装置可以是一个检流计或电子放大器或静电计。

电桥法只需要一灵敏的电流检测器作为零点指示器,测量精确度主要取决于已知的桥臂电阻器,这 些桥臂电阻应在宽的电阻值范围内具有高的精密度和稳定性。

电流比较法的精确度取决于已知电阻器的精确度和电流测量装置,包括与它相连的测量电阻器的 稳定度和线性度。只要电压是恒定的,电流的确切数值并不重要。

对于不大于IO11 Q的电阻,可以按照11. 1用检流计采用伏特计一安培计法来测定其体积电阻率。 对于较高的电阻,则推荐使用直流放大器或静电计。

在电桥法中,不可能直接测量短路试样中的电流(见11. 1)。

利用电流测量装置的方法可以自动记录电流,以简化稳态测试过程(见11. l)o

现已有测量高电阻的一些专门的线路和仪器。只要它们有足够的精确度和稳定度,且在需要时能 使试样完全短路并在电化前测量电流者,均可使用.

6.2精确度

对于低于io10 n的电阻,测量装置测量未知电阻的总精确度应至少为士io%。而对于更高的电 阻,总精确度应至少为士20%。详见附录A。

6.3保护

组成测量线路的绝缘材料,应具有与被试材料差不多的性能。试样的测量误差可以由下列原 因产生:

a) 外来寄生电压引起的杂散电流,通常不知道它的大小,并具有漂移的特点;

b) 具有未知而易变的电阻值的绝缘与试样电阻、标准电阻器或电流测量装置的不正常的分路.

使线路所有部分在使用状态下有尽可能高的绝缘电阻来近似地修正这些影响因素。这种做法可能 导致测试设备很笨重,而又不足以测量高于几百兆欧的绝缘电阻。较为满意的修正方法是使用保护技 术来实现。

保护就是在所有关键的绝缘部位插入保护导体,保护导体截住所有可能引起误差的杂散电流。这 些保护导体联接在一起,组成保护系统并与测量端形成三端网络。当线路联接恰当时,所有外来寄生电 压产生的杂散电流被保护系统分流到测量电路以外,任一测量端到保护系统的绝缘电阻与一电阻低得 多的线路元件并联,试样电阻仅限于两测量端之间。采用这个技术可大大地减小误差概率。图1为使 用保护电极测量体积电阻和表面电阻的基本线路。

图5和图7给出了电流测量法中保护系统的使用方法,图中指出保护系统接到电源和电流测量装 置的连接点。图6表示惠斯登电桥法,其保护系统接到两个较低电阻值的桥臂的连接点上。在所有情 况下,保护系统必须完善,包括对测试人员在测量时操作的任何控制仪器的保护。

在保护端和被保护端之间所存在的电解电动势、接触电动势或热电动势较小时,均能被补偿掉,使 这样的电动势在测量中不会引入显著的误差。

在电流测量法中,由于电流测量装置与被保护端和保护系统之间的电阻并联可能产生误差,因此, 这个电阻宜至少为电流测量装置电阻的10倍,为100倍。在有些电桥法中,保护端和测量端具有 大致相同的电位,不过电桥中的一个标准电阻器与不保护端和保护系统之间的电阻是并联的。这个电 阻应至少为标准电阻的10倍,为100倍。

为确保设备的操作令人满意,应先断开电源和试样的连线进行一次测量。此时,设备应在它的灵敏 度许可范围内指示出无穷大的电阻。如果有一些已知电阻值的标准电阻,则可用来检查设备运行是否 良好。

试验程序

试样按本标准第7章、第8章、第9章、第10章进行准备。

测量试样及电极的尺寸、表面间隙的宽度g(两电极之间距离),精确到士1%°然而,如有必要,对 薄试样可在有关的规范中规定不同的精确度。

为测定体积电阻率,应按照有关的规范测量每个试样的平均厚度,其厚度测量点应均匀地分布在由 被保护电极所覆盖的整个面积上。

注:对于薄试样无论如何在加上电极前测量厚度。

一般说来,应与条件处理时相同的湿度(浸在液体中的条件处理除外)和温度下测试电阻。但有时 也可在停止条件处理后的规定时间内进行测量。

11. 1体积电阻

在测试以前应使试样具有电介质稳定状态。为此,通过测量装置将试样的测量电极1和3短路 (图la)),逐步增加电流测量装置的灵敏度到符合要求,同时观察短路电流的变化,如此继续到短路电 流达到相当恒定的值为止,此值应小于电化电流的稳定值,或者小于电化100 min的电流。由于短路电 流有可能改变方向,因此即使电流为零,也要维持短路状态到需要的时间。当短路电流L变得基本恒 定时(可能需要几小时),记下L的值和方向。

然后加上规定的直流电压并同时开始记时」除非另有规定,在如下每个电化时间作一次测量: 1 min,2 min.5 min.10 min.50 min JOO mino如果两次连续测量得出同样的结果,贝lj可以结束试验并 用这个电流值来计算体积电阻。记录次观察到相同测量结果时的电化时间。如果在100 min内不 能达到稳定状态,则记录体积电阻与电化时间的函数关系。

作为验收试验,按照有关规范的规定,使用一个固定的电化时间如1 min后的电流值来计算体积电 阻率。

11.2表面电阻

施加规定的直流电压,测定试样表面的两个测量电极(图lb)中电极1和2)间的电阻。应在1 min 的电化时间后测量电阻,即使在此时间内电流还没有达到稳定的状态。

12计算 12. 1体积电阻率

体积电阻率按下式计算:

d A
p' = R^h

式中:

——体积电阻率,单位为欧姆米(Q • m)(或欧姆厘米(Q • cm));

Rx——按H. 1测得的体积电阻,单位为欧姆(Q);

A——是被保护电极的有效面积,单位为平方米(奇)(或平方厘米(cm2));

h 试样的平均厚度,单位为米(m)(或厘米(cm))。

在附录中给出了某些特殊的电极装置的有效面积A的计算公式。

对于某些具有高电阻率的材料,电化以前的短路电流L(见11. 1)与电化期间的稳定电流L相比 不能忽略不计。在这种情况下按下式确定体积电阻:

Ux

L 士 L

式中:

Rx——体积电阻,单位为欧姆(Q);

Ux——施加电压,单位为伏(V);

为电化期间的稳态电流,单位为安(A),或在电化期间如果电流是变化的,则为1 min,

10 min和100 mm时的值,单位为安(A);

L — 电化前的短路电流,单位为安(A)。 当為与L方向相同时使用负号,反之使用正号。

12.2表面电阻率

表面电阻率应按下式计算:

中性5.png

 

GB/T 31838《固体绝缘材料介电和电阻特性》目前发布以下部分:

一第1部分:总则;

一第2部分:电阻特性(DC方法)

体积电阻和体积电阻率;

一第3部分:电阻特性(DC方法)

表面电阻和表面电阻率;

一第4部分:电阻特性(DC方法)绝缘电阻。

本部分为GB/T 31838 的第3部分。

本部分按照GB/T 1.1-2009给出的规则起草。

本部分使用翻译法等同采用IEC62631-3-2:2015《固体绝缘材料的介电和电阻特性第3-2部分:

确定电阻特性(DC方法)表面电阻和表面电阻率的一般方法》。

电压击穿测试仪,体积表面电阻率测试仪,介电常数介质损耗测试仪,漏电起痕试验仪,耐电弧试验仪,TOC总有机碳分析仪,完整性测试仪,无转子硫化仪,门尼粘度试验机,热变形维卡温度测定仪,简支梁冲击试验机,毛细管流变仪,橡胶塑料滑动摩擦试验机,氧指数测定仪,水平垂直燃烧试验机,熔体流动速率测定仪,低温脆性测试仪,拉力试验机,海绵泡沫压陷硬度测试仪,海绵泡沫落球回弹测试仪,海绵泡沫压缩永九变形试验仪

相关产品

厂商推荐产品

在线留言

换一张?
取消