仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

真实影像纤毫毕现,奥林巴斯数码显微镜在中药材鉴定研究中的应用

仪景通光学科技(上海)有限公司 2021-05-14 11:38:13 745  浏览
  • 中药鉴定学是一门研究和鉴定中药的品种和质量,制定中药质量标准,寻找和扩大新药源的应用学科。它在传统鉴别经验的基础上,运用现代科学的方法和技术,进行中药品种特征的鉴定、中药质量的评定、以及中药资源的开发和扩大。


    中药鉴定的样品包括完整的中药、药材碎块、饮片和粉末,其种类非常复杂。因此,中药鉴定的方法也是多种多样的。常见的鉴定方法有来源鉴定、性状鉴定、显微鉴定及理化鉴定等方法。每一种鉴定方法都有其特点和适用对象,通常检测人员需要根据样品的具体条件和鉴定要求同时使用多种方法来进行鉴定工作。


    显微鉴定是指利用显微镜来观察药材的组织构造、细胞形状以及内含物的特征,通常用来鉴定药材的真伪和纯度。当药材的外形不易被鉴定、药材破碎或呈粉末状时,显微鉴定的方法较为常用。


    一、宏观和微观兼顾


    针对切碎的草类和叶类药材,表面片的显微观察是最常用的方法,检测人员需要选取药材的适当部位,制成显微标本片后,再使用显微镜进行细节观察。而对于一些动物药材的鉴定来说,整体的宏观观察则尤为重要。


    奥林巴斯DSX1000数码显微镜的放大倍率范围为20倍到7000倍,检测人员既可以在低放大倍率下进行高质量的整体观察,又可以快速放大以开展微米级的详细分析。该系列数码显微镜的大景深和长工作距离方便检测人员检验较大的样品,同时,还可以通过自由角度观察系统从多个方向进行样品成像。


    奥林巴斯DSX1000拍摄的藏红花组织形态


    奥林巴斯DSX1000拍摄的虫草



    二、使用显微镜的特殊观察方式进行药材鉴别


    研究发现,黄芪有多种淀粉粒,人参中也有多种草酸钙结晶,很多植物类药材的组织、细胞及内含物均具有稳定的、特异的偏光现象。

    针对以上情况,检测人员使用偏光观察模式可以快速、准确地找到鉴定特征并排除干扰。除直接粉碎成细粉观察外,还可进行磨片观察。比如将透明矿物磨成薄片,根据光透射到矿物晶体内部所发生的折射、反射、干涉等现象进行鉴定。


    奥林巴斯DSX1000拍摄的麝香


    奥林巴斯DSX1000拍摄的蝉蜕


    传统系统可能只提供一种或两种观察方式,检测人员在样品中得到的信息非常有限。奥林巴斯DSX1000数码显微镜提供多种观察方式,只需使用按钮就能在明场、偏斜、暗场、MIX、简易偏光、微分干涉六种观察方法间实现一键切换,可以快速选择出最合适的观察方法,从而获得优质的图像。

    DSX1000优化图像功能


参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

真实影像纤毫毕现,奥林巴斯数码显微镜在中药材鉴定研究中的应用

中药鉴定学是一门研究和鉴定中药的品种和质量,制定中药质量标准,寻找和扩大新药源的应用学科。它在传统鉴别经验的基础上,运用现代科学的方法和技术,进行中药品种特征的鉴定、中药质量的评定、以及中药资源的开发和扩大。


中药鉴定的样品包括完整的中药、药材碎块、饮片和粉末,其种类非常复杂。因此,中药鉴定的方法也是多种多样的。常见的鉴定方法有来源鉴定、性状鉴定、显微鉴定及理化鉴定等方法。每一种鉴定方法都有其特点和适用对象,通常检测人员需要根据样品的具体条件和鉴定要求同时使用多种方法来进行鉴定工作。


显微鉴定是指利用显微镜来观察药材的组织构造、细胞形状以及内含物的特征,通常用来鉴定药材的真伪和纯度。当药材的外形不易被鉴定、药材破碎或呈粉末状时,显微鉴定的方法较为常用。


一、宏观和微观兼顾


针对切碎的草类和叶类药材,表面片的显微观察是最常用的方法,检测人员需要选取药材的适当部位,制成显微标本片后,再使用显微镜进行细节观察。而对于一些动物药材的鉴定来说,整体的宏观观察则尤为重要。


奥林巴斯DSX1000数码显微镜的放大倍率范围为20倍到7000倍,检测人员既可以在低放大倍率下进行高质量的整体观察,又可以快速放大以开展微米级的详细分析。该系列数码显微镜的大景深和长工作距离方便检测人员检验较大的样品,同时,还可以通过自由角度观察系统从多个方向进行样品成像。


奥林巴斯DSX1000拍摄的藏红花组织形态


奥林巴斯DSX1000拍摄的虫草



二、使用显微镜的特殊观察方式进行药材鉴别


研究发现,黄芪有多种淀粉粒,人参中也有多种草酸钙结晶,很多植物类药材的组织、细胞及内含物均具有稳定的、特异的偏光现象。

针对以上情况,检测人员使用偏光观察模式可以快速、准确地找到鉴定特征并排除干扰。除直接粉碎成细粉观察外,还可进行磨片观察。比如将透明矿物磨成薄片,根据光透射到矿物晶体内部所发生的折射、反射、干涉等现象进行鉴定。


奥林巴斯DSX1000拍摄的麝香


奥林巴斯DSX1000拍摄的蝉蜕


传统系统可能只提供一种或两种观察方式,检测人员在样品中得到的信息非常有限。奥林巴斯DSX1000数码显微镜提供多种观察方式,只需使用按钮就能在明场、偏斜、暗场、MIX、简易偏光、微分干涉六种观察方法间实现一键切换,可以快速选择出最合适的观察方法,从而获得优质的图像。

DSX1000优化图像功能


2021-05-14 11:38:13 745 0
纤维纺织品测试鉴定难?我们帮您变身“火眼金睛”——识经辨纬, 纤毫毕现

随着纺织行业的发展,各种新型纺织纤维已经成为当今高新技术领域的重要材料。纤维纺织品种类繁多、功能多样,针对不同样品的性能特点,往往需要采用不同的表征技术进行测试。

纤维纺织品分析需求和对应技术

珀金埃尔默利用自身完整的产品线,从光谱、色谱、质谱到热分析等多种技术角度,为纤维纺织品的鉴定、成分分析等需求提供完善的解决方案:

Ø 纺织纤维鉴别——红外光谱法红外成像测试技术

Ø 纺织品辐射率和温升测试——光谱发射率测量系统

Ø 迷彩服等纺织品的反射率和紫外线防护系数进行测定——紫外可见近红外分光光度计

Ø 纤维的种类、牌号及制造商等进行区分——差示扫描量热仪

Ø 纤维成分的定性及定量分析——热重-红外-气质联用技术

Ø 纺织品中有机毒物的检测——色谱技术

Ø 纺织品中重金属元素的检测——原子光谱技术

Ø 纳米纺织品环境毒理学研究——单颗粒ICP-MS技术

 

复制链接下载《珀金埃尔默纤维纺织品检测解决方案

http://www.yiqi.com/technology/file_152205.html

2019-06-10 13:42:11 299 0
显微成像系统在中药鉴定中的应用

中药显微鉴定是利用显微镜观察植( 动) 物药材内部的细胞、组织构造及细胞内含物,明确其显微特征,从而达到鉴别目的的一种鉴定方法,是中药四大传统鉴定方法之一具有简便、经济,并适用于破碎、粉末中药的特点。

鉴定中少不了对观察样品图片进行保存对比,明美显微成像系统搭配显微镜在电脑成像,可实时观察与保存图片等。

此次实验老师观看样品为玫瑰花、植物等。搭配体视显微镜来观察与拍照,且需要测量和消除斜照光的影响,明美工程师推荐了1000万分辨率显微成像系统MSX1,可清晰拍摄样品图,同时,显微成像系统MSX1针对显微镜拍摄场景做了特别优化,可精确还原样品的精细结构和真实色彩,通过硬件加速,极大提升了相机运行速度,获得老师的认可。

来源:https://www.mshot.com/article/1178.html

2022-05-31 20:37:08 223 0
显微CT在齿科研究中的应用

显微CT分析可用于牙科研究中的各种应用,如牙釉质厚度、根管形态、根管预备、颅面部骨骼结构、显微有限元建模、牙体组织工程、牙硬组织矿物密度及种植体等方面。它可以提供高分辨率图像以及牙齿、骨骼和植入物的定性和定量分析。      

根管是一种孔隙,这种在牙齿中间的低密度空间对牙髓病的研究起了可探索的方向。显微CT在牙科填料的研究上,特别适用于三维定量评价根管充填物

牙釉质厚度在人类进化中具有分类学和系统发育价值。显微CT有效且无损的技术特性被用于测量各种考古标本的牙釉质厚度。在临床研究中,牙釉质厚度被认为对于咬合负荷方案的解释具有重要意义。

 

实例2:大鼠下颌骨和舀齿

大鼠或小鼠下颌骨和臼齿在牙周病和其他牙科相关领域的许多研究模型中有着重要价值。通过显微CT对动物下颌骨和牙齿的测量研究,可进一步分析牙周生物型各特征之间的相关性,为口腔美学修复、种植ZL方案的选择、ZL预后的判断以及LX的评估提供理论基础

 

实验设备:VENUS® Micro-CT 

            中文名:桌面型高分辨显微CT

            型号:VNC-100

影像软件:Avatar 1.3 (平生YL科技)


2020-05-27 09:35:21 536 0
数码显微镜在电子半导体行业的应用案例分享

面对电子半导体行业研发、品质的各种观察、分析、测量要求。

比如打线结合,BGA高度,镀层的表面通常很难直观地观察及测量,但是基恩士VHX-7000N系列高清数码显微镜能够提供精 准的数据支持和高清结构观察。


金线高度检测


BGA高度检测


同时也能直接观察和测量镀层表面面积占比,为改善镀层工艺提供更精 准的数据参考。


连接器镀层检测


2023-05-23 15:45:35 126 0
pcr技术在微生物菌种鉴定中的应用主要有哪些
 
2016-01-10 03:46:14 366 1
奥林巴斯工业显微镜在文保行业的应用

      文物的科技保护包含科学的分析认知与技术性保护与修复这两个方面。即指以科学的方法和手段去了解文物及其衰败的状况和规律,提供理想的保护方法、技术路线及保护材料。技术性修复则指在科学认知的基础之上,以合理的技术手段,遵循科学的技术路线对文物实施具体的修整,使其真正地达到化腐朽为神奇的目的和效果,将科学的认知转变为流光溢彩的现实。

体视显微镜在文物保护中的应用

问题:

外观形貌分析是文物分析的diyi步,金属、纸张、丝绸、陶瓷等各类文物都需要进行外攒形貌分析。

解决方案:

体式显微镜一般都配有CCD系统,可直接获得被观测物体的显微放大照片。它可以观察各类文物,如表面锈蚀产物、装饰手法等的外观形貌,是文物表面观察和工艺鉴别的理想工具。 

偏光显微镜在文保行业的应用

问题:

有偏光属性的古代文物鉴定。

解决方案:

偏光显微镜是根据不同矿物晶体在偏振光透过时具有不同的光学性质来鉴定矿物的,可以用于古代颜料的鉴别、织物纤维的微观判断等。 

金相显微镜在文物保护中的应用

问题:

金属文物的冶炼铸造工艺和加工工艺研究。

解决方案:

通过金相显微镜可以获取金属文物的铸造工艺信息,如了解金属文物是铸造态树枝晶组织的形貌,还是退火态的等轴晶组织形貌,晶间腐蚀现象等,还可以观测到金属文物腐蚀产物的生成状态。

光学数码显微镜在文物保护中的应用

问题:

各种文物表面的三维形貌观察。

解决方案:

三维视频显微镜可以实现三维立体成像,可以轻松观察到文物表面的各种现象,如霉斑造成的织物纤维受损现象、捻金线的金箔脱落现象、甚至于霉菌活体生长的现象等。

激光共聚焦显微镜在文物保护中的应用

问题:

玉器真品和仿品的鉴别。

解决方案:

玉器真品与仿品的表面粗糙度有差异,用激光共聚焦显微镜的非接触粗糙度测量功能可以快速分辨。


(来源:上海西努光学科技有限公司)

2019-06-17 15:01:41 306 0
奥林巴斯手持光谱仪在贵金属行业的应用

  手持光谱仪作为一款无损检测的便携式设备,在合金分析、废旧金属回收、贵金属检测等方面都有广泛应用。手持光谱仪能够通过光谱分析的方法对贵金属的成分和特性进行准确的检测和判断,为贵金属行业的生产和加工提供了有效的技术手段。

  奥林巴斯手持光谱仪在贵金属行业的应用主要包括以下几个方面:

  贵金属鉴定:贵金属如黄金、铂金和白银等在市场上存在着伪劣产品的风险。奥林巴斯手持光谱仪可以通过分析贵金属样品的光谱特征,快速准确地鉴定其成分和纯度。它能够识别掺杂元素的含量以及非贵金属杂质的存在,帮助用户确认贵金属的真实性。

  贵金属回收:在贵金属回收行业中,奥林巴斯手持光谱仪可以用于快速检测废料和回收贵金属的成分。通过对样品进行即时分析,确定其中的金、银、铂等贵金属含量,并评估其价值。这有助于提高回收效率和准确性。

  贵金属加工控制:在贵金属加工过程中,奥林巴斯手持光谱仪可以用来监测和控制贵金属的成分。通过实时检测加工过程中的贵金属样品,确保产品符合预期的成分要求。同时,其便携性和高效性使其适用于实地操作和批量检测。

  珠宝行业:在珠宝行业中,奥林巴斯手持光谱仪可用于鉴定和评估珠宝中的贵金属成分。通过扫描珠宝样品,确定其中金、银、铂等贵金属的含量,并提供准确的鉴定结果。这有助于购买者验证珠宝的真实性,并提供参考价值。

  赢洲科技作为奥林巴斯一级品牌代理商,拥有完整的售前售后服务体系,如有仪器购买或维修需求,可联系赢洲科技为您提供原装零部件替换、维修。


2023-07-14 10:53:33 219 0
奥林巴斯手持光谱仪在日常金属用品制造检测中的应用

  我们日常生活中用到的很多金属用品,需要借助手持光谱仪检测其中是否含有铅、汞、六价铬、多溴联苯、多溴二苯醚等六种有害物质。金属材料中有害物质成分和含量有明确的指标,在一定含量内不会造成很大的伤害,但超过该指标,长期接触会对人体产生非常严重的影响。

  有报道称,由于这些有害物质,会导致人体肾功能衰竭,如铅元素会对神经系统、消化系统、骨造血功能造成伤害。

  有害物质我们无法直接分辨,所以需要一款性能强大的设备来检测对人体有害的相关物质。

  如今科技的发展,为我们的生产问题提供了更多的解决方案,手持光谱仪足以满足质量检验的需求,可以快速准确检测出样品中的元素和元素成分,是金属材料检测的重要辅助工具。

  手持光谱仪技术层面不断进行改革创新,开发的新型Axon技术为用户提供提供准确的结果,从而有助于提高生产效率。手持式光谱仪具有智能分拣功能,可以根据被测材料简单直观地延长或缩短检测时间,从而节省时间,尽可能为用户提供匹配的结果。

  赢洲科技作为奥林巴斯一级品牌代理商,拥有完整的售前售后服务体系,如有仪器购买或维修需求,可联系赢洲科技为您提供原装零部件替换、维修。


2023-06-09 09:34:48 105 0
DSC-Raman联用技术在研究高分子结晶度中的应用

       差示扫描量热仪(DSC)和拉曼光谱仪均被广泛应用于结晶度的研究,但监测的原理截然不同。DSC不仅可以精确确定样品结晶度,而且还可以通过测定相关焓变信息得到结晶动力学参数。凭借自身极其优异地控温能力——加热和冷却速度可以高达750°C/min可控,PerkinElmer®DSC80008500型DSC经常用于结晶度研究。ZL的双炉体设计,赋予炉温瞬间稳定以及精确控制在某一真实温度的能力,等温研究Z好是在这个模式下进行。结晶物的拉曼光谱和非结晶物一般不同,前者的峰宽较窄。拉曼光谱仪还可用于监控非常慢速的变化过程,从而提供额外的样品信息,并且也可以准确判定混晶发生的位置。PerkinElmer公司研发的RamanStation™400RamanFlex™lines允许实时调节激光脉冲周期,因此可以轻松调节拉曼光谱采集信号速率和DSC扫描速率的Z佳匹配值。同时测量消除了材料可能受试样热历史影响而带来的不确定性。


       下文针对半结晶性聚氧化乙烯的DSC-Raman检测可以充分说明两种技术的互补性。上述材料已被广泛运用于YL、生活以及工作的方方面面,例如牙膏。试样从10°C加热到75°C,经历了熔融过程,然后冷却到10°C,再进行重复扫描。diyi周循环中样品的熔融峰温位于70°C,而在第二次升温扫描中则出现在66.7°C。第二周升温测得的熔融热值也降低了(图1)。这暗示了diyi次的熔融和结晶过程使得材料的无定型区增加。

图1.聚氧化乙烯(PEO)的DSC扫描。diyi次和第二次循环被标注清楚


        在DSC运行时拉曼光谱每间隔5秒接受一次。diyi次加热/冷却循环之后,光谱中显示大量的无定型组分特征(图2)。通过差减可以diyi次循环扫描前后的光谱差异。虽然存在噪音,但它与完全熔融时的光谱图非常相似。因此拉曼光谱可以直接确认来自于DSC数据的推论,那就是diyi次加热/冷却循环提高了试样的无定型含量。从这些数据(图3)可以得到结晶组分的光谱和非晶组分的光谱。

图2.PEO的DSC扫描和光谱

图3.PEO结晶和非晶的拉曼光谱

       常用这两种技术来研究聚对苯二甲酸乙二醇酯(PET)。试样从熔融温度快速冷却至室温后检测到存在明显的无定型结构。热流曲线显示一个玻璃化转变温度(Tg)大约在70°C,然后出现冷结晶,在270°C发生晶区熔融(图4)。拉曼光谱的变化很小,但可以紧跟着进行主成分分析(PCA)。分析1727cm-1C=O拉曼骨架,得到两个主要的组分:PC1是diyi次求导曲线,对应于骨架的移动,PC2是二次求导曲线,表示峰宽的变化。很明显,对于峰宽变化的温度曲线与试样的结晶和熔融的相对应。然而,峰移动的温度曲线并不与DSC热流曲线的事件相对应,但反映了随着温度的提高向低频连续的移动。

       等温结晶可以真正地被DSC或带有可以理想的快速处理的DSC的拉曼光谱仪监测,而拉曼甚至可以被应用于慢速结晶研究。在研究两种吹塑成型的聚乙烯薄膜中可以看到两种技术数据的相关性,其中的一个材料不好。以500°C/min的速度快速从熔融状态冷却,测量发现试样在121°C结晶。这个实验需要使用HyperDSC®-capable设备,像DSC8500设备一样可以快速冷却并且仍然可以精确地、稳定地回到等温温度。一个稳定的瞬态之后,DSC数据(图5)显示问题材料比合格材料结晶更快,熔融焓值更高。拉曼数据(图5)显示Z初试样加热和冷却以及等温过程。这种情况下来自PCA的分数可以直接与结晶度相关。这里发现问题材料比合格材料结晶更快,另外Z终结晶度也比合格材料高。两组数据显示Z终的结晶度,问题材料高于合格材料50%。两种情况下材料Z终的结晶度远低于开始时的结晶度。

      图4PET的DSC和拉曼数据

图5a.HDPE等温结晶的DSC曲线图

图5b.HDPE熔融和等温结晶的拉曼光谱

DSC-Raman光谱仪赋予我们精确研究高聚物的能力,可以GX再现样品在各种控温条件下的结晶行为,同时与DSC能量变化相关的结构信息也能通过拉曼光谱体现。这种途径使得两种方法的相关性精确,有助于对结晶行为更深层次的理解。




2019-06-21 14:08:36 502 0
高压放大器ATA-2021H在扫描光纤激光器研究中的应用

实验名称:高压放大器在新型窄线宽波长扫描光纤激光器研究中的应用

实验目的:根据仿真参数进行DCR-CC滤波器的搭建和实验验证。并搭建了基于DCR-CC滤波器和C+L波段EDFA的单纵模窄线宽波长扫描光纤激光器并探究其性能。

实验设备:滤波器,函数发生器,高压放大器ATA-2021H等

实验过程:

1.DCR-CC搭建与表征;

采用腔长分别为50.70 cm和 52.00 cm的参数搭建DCR-CC滤波器,使用如图所示的系统测量DCR-CC滤波器的滤波性能。

2.C+L波段激光增益范围的实现;

提出的C+L波段单纵模窄线宽波长扫描光纤激光器结构如图所示。两部分通过两个CL波段波分复用器并联在一起。一个自制的DCR-CC复合谐振腔滤波器作为大范围滤波元件,用以于从密集的主腔纵模中筛选SLM,一个FFP-TF作为波长扫描元件,由一个函数发生器和高压放大器ATA-2021H进行驱动。虚线框内的FFP-TF等器件可由Cir-2和替换FBG代替,用来测量激光器静态激光输出性能。

实验结果:

1.如图分别显示了四个波长处在60分钟内的中期激光运行稳定性,通过使用分辨率为0.02 nm,数据采集间隔为0.001 nm 的OSA重复扫描进行测量。从图中可以看出,四个激光的波长波动性f (i=1,2,3,4)很小,最大为 0.006 nm,功率波动性f, (i=1,2,3,4)很低,最大值为0.704 dB,其信噪比OSNR均高于66 dB。

2.自零差法测量不同扫描频率下ESA测得的拍频谱。

实验结论:

对于FDML波长扫描激光器,通过提高增益、使用带宽更窄的高速可调滤波器,来进一步提升激光器性能。设计更加适合FDML机理的复合谐振腔滤波器有望进一步改善激光器的纵模特性。

安泰高压放大器ATA-2021H主要指标:

以上内容由西安安泰整理发布,安泰高压放大器最大输出200Vp-p (±100Vp)高压,可以驱动高压型负载,完美匹配各大匹配函数信号源及任意波形信号发生器,广泛应用于压电陶瓷驱动、超声波测试、声呐系统应用和MEMS测试等,可提供免费样机试用服务,如果想了解高压放大器更多应用,欢迎访问安泰测试网。


2021-09-07 11:45:58 303 0
TOF-SIMS在光电器件研究中的应用系列之二

PART 0
引言  


有机发光二极管(Organic Light-Emitting Diode,OLED)是基于多层有机薄膜结构的电致发光的器件,用作平面显示器时具有轻薄、柔性、响应快、高对比度和低能耗等优点,有望成为新一代主流显示技术。然而,高效率和长寿命依然是阻碍OLED发展的重要因素,因为有机材料易降解和器件界面结构不稳定从而导致OLED器件失效。在此背景下,迫切需要了解器件的退化机制,从而在合理设计和改进材料组合以及器件结构的基础上,找到提高器件寿命的有效策略。



图1. 基于OLED柔性显示器件


 PART 0
TOF-SIMS表面分析方法  

研究有机/无机混合OLED器件的界面效应是提高其性能和运行稳定性的关键步骤。在众多分析方法中,飞行时间二次离子质谱仪(Time of Flight-Secondary Ion Mass Spectrometer,TOF-SIMS)是表征有机层及其内部缺陷的有效分析工具。TOF-SIMS是由一次脉冲离子束轰击样品表面所产生的二次离子,经飞行时间质量分析器分析二次离子到达探测器的时间,从而得知样品表面成份的分析技术,具有以下检测优势:

(1)兼具高检测灵敏度(ppmm-ppb)、高质量分辨率(M/DM>16000)和高空间分辨率(<50nm);

(2)表面灵敏,可获取样品表面1-2个原子/分子层成分信息 (≤2nm);

(3)可分析H在内的所有元素,并且可以分析同位素;

(4)能够检测分子离子,从而获取有机材料的分子组成信息;

(5)适用材料范围广:导体、半导体及绝缘材料。


目前,TOF-SIMS作为一种重要的表面分析技术,可以用于样品的表面质谱谱图分析,深度分析,2D以及3D成像分析,所以被广泛应用于半导体器件、纳米器件、生物医药、量子材料以及能源电池材料等领域。


PART 0
应用简介  

基于Alq3(8-hydroxyquinoline, aluminum salt,8-羟基喹啉和铝,分子结构见图2)的OLED器件,因其宽视角、高亮度和低功耗的特性,成为下一代平板显示器最有潜力的备选之一。这类器件具有“三明治”结构,在两个电极之间夹有多个有机层。对于OLED器件的研究不仅专注于探索有机材料,还要进行失效分析来确定故障(如显示黑点)产生的原因。在这里,我们展示了TOF-SIMS 对Alq3有机层进行了全面表征。



图2. Alq3的分子结构式


图3和图4均为市售Alq3材料在正离子模式下的TOF-SIMS谱。TOF-SIMS结果表明,利用Au+和Ga+离子源均可检测到Alq3碎片的质量特征峰,但Au+离子源对这些碎片的灵敏度更高。比如,对比相同离子电流下的Au+和Ga+离子束对质量数为315的Alq2分子碎片的灵敏度,发现前者灵敏度提高了23倍。此外,只有Au+离子源才能检测到质量数超过1000的质量片段。这些质谱体现出使用Au+源分析Alq3这类分子量较大的材料的优势。


图3. 正离子模式下Alq3的TOF-SIMS谱。分析条件: 一次离子束Au+,22 keV;样品电流:0.07 pA;分析面积:300 μm2;数据采集时间10 min



4. 正离子模式下Alq3的TOF-SIMS谱。分析条件: 一次离子束Ga+,15 keV;样品电流:0.3 pA;分析面积:300 μm2;数据采集时间10 min


此外,Alq3薄膜必须在高真空条件下沉积才能保持其完整性。为研究大气对Alq3薄膜的影响,分别对暴露在空气前后的样品进行了TOF-SMIS表征,结果如图5所示。TOF-SMIS证明了暴露大气后Alq3薄膜发生了分解,并且随着暴露时间的增长,AlqO2质量片段的强度增加,表明水分和氧气会显著改变Alq3的组成。



图5. 负离子模式下Alq3在大气中暴露前后在的TOF-SIMS谱。分析条件: 一次离子束Ga+,15 kev;分析面积:300 μm2


总之,三重离子束聚焦质量分析器(Triple Ion Focusing Time-of-Flight,TRIFT)结合Au+离子源能显著提高仪器的灵敏度和降低本底,增强TOF-SMIS检测Alq3等高质量数(大分子)材料碎片的能力。


2022-12-05 13:08:46 802 0
TOF-SIMS在光电器件研究中的应用系列之三

一、引言

光伏发电新能源技术对于实现碳中和目标具有重要意义。近年来,基于有机-无机杂化钙钛矿的光电太阳能电池器件取得了飞速的发展,目前报道的最 高光电转化效率已接近26%。卤化物钙钛矿材料具有无限的组分调整空间,因此表现出优异的可调控的光电性质。然而,由于多组分的引入,钙钛矿材料生长过程中会出现多相竞争问题,导致薄膜初始组分分布不均一,这严重降低了器件效率和寿命。



图1. 钙钛矿晶体结构


二、TOF-SIMS应用成果

由于目前用于高性能太阳能电池的混合卤化物过氧化物中的阳离子和阴离子的混合物经常发生元素和相分离,这限制了器件的寿命。对此,北京理工大学材料学院陈棋教授等人研究了二元(阳离子)系统钙钛矿薄膜(FA1-xCsxPbI3,FA:甲酰胺),揭示了钙钛矿薄膜材料初始均一性对薄膜及器件稳定性的影响。研究发现,薄膜在纳米尺度的不均一位点会在外界刺激下快速发展,导致更为严重的组分分布差异化(如图2所示),最 终形成热力学稳定的物相分离,并贯穿整个钙钛矿薄膜,造成材料退化和器件失活。该研究成果以题为“Initializing Film Homogeneity to Retard Phase Segregation for Stable Perovskite Solar Cells”发表在Science期刊。[1]



图2. 二元 FAC 钙钛矿的降解机制。(A-H)钙钛矿薄膜的组分初始分布和在外界刺激下的演变行为。(I-N)热力学驱动下,钙钛矿薄膜的物相分离现象的TOF-SIMS表征


TOF-SIMS作为重要的表面分析方法,具有高检测灵敏度(ppm-ppb)、高质量分辨率(M/DM>16000)和高空间分辨率(<50 nm)能力。在本研究中利用TOF-SIMS对发生老化后(晶体相变)的钙钛矿薄膜进行表征,从2D元素分布图中观察到薄膜中的阳离子Cs与FA同时发生了分离(如图2所示),并形成尺寸为几到几十微米的相,将二者的元素分布图像叠加后(见图2 K),观察到分离后的Cs/FA偏析区域在空间上形成互补,证明了每个区域的组成与其晶体结构相关联。此外,TOF-SIMS 3D影像(图2L至2N)表明,垂直方向分布相对均匀,阳离子在不同深度上的聚集方式与表面类似。TOF-SIMS结合XRD和PL结果证明了由于阳离子的局部聚集,从而导致了相分离。


此外,从降解初期的FACs钙钛矿薄膜的TOF-SIMS图像中明显能观察到无色区域(见图3A)Cs的信号更强,表明了区域1(与图2A和E中标注位置一一对应)中的Cs+阳离子有迁移到区域2和3,进一步表明了该膜的降解是由Cs偏析和随后的相变所引起的。



图3. 二元阳离子FACs钙钛矿膜在降解初期的TOF-SIMS图


该研究采用Schelling的偏析模型,并结合TOF-SIMS及其他实验观察数据结果表明:

(1)钙钛矿薄膜初始均一性对薄膜的老化行为有显著影响:薄膜在纳米尺度的不均一位点会在外界刺激下快速发展,导致更为严重的组分分布差异化,最 终形成热力学稳定的物相分离,并贯穿整个钙钛矿薄膜,造成材料退化和器件失活。

(2)薄膜均一性的提升将显著减缓其老化速率:通过在钙钛矿前驱体溶液中引入弱配位的添加剂硒酚,有效调控了溶液胶体环境,提升了薄膜均一性。实验结果表明,均一性提升的薄膜在热、光老化条件下,表现了较好的稳定性,在实验周期内未出现显著的物相分离。同时,经过进一步的器件优化,所制备的太阳能电池器件展现了良好的光电性能,在1 cm²器件上,获得了23.7%的认证效率。在不同温度条件下,器件在LED光源持续照射下,也表现了良好的工作稳定性。


三、TOF-SIMS表面分析方法

飞行时间二次离子质谱仪(Time of Flight-Secondary Ion Mass Spectrometer,TOF-SIMS)是由一次脉冲离子束轰击样品表面所产生的二次离子,经飞行时间质量分析器分析二次离子到达探测器的时间,从而得知样品表面成份的分析技术,具有以下检测优势:


(1)兼具高检测灵敏度(ppm-ppb)、高质量分辨率(M/DM>16000)和高空间分辨率(<50nm);

(2)表面灵敏,可获取样品表面1-2个原子/分子层成分信息 (≤2nm);

(3)可分析H在内的所有元素,并且可以分析同位素;

(4)能够检测分子离子,从而获取有机材料的分子组成信息;

(5)适用材料范围广:导体、半导体及绝缘材料。



图4. TOF-SIMS可以提供的数据类型


目前,TOF-SIMS作为一种重要的表面分析技术,可以用于样品的表面质谱谱图分析,深度分析,2D以及3D成像分析,所以被广泛应用于半导体器件、纳米器件、生物医药、量子材料以及能源电池材料等领域。


参考文献

[1] Bai et al. Initializing film homogeneity to retard phase segregation for stable perovskite solar cells, Science (2022). https://doi.org/10.1126/science.abn3148


2022-12-05 13:11:13 321 0
【AM-AN-22025A】标准粒子在光散射研究中的应用

全文共1834字,阅读大约需要6分钟


关键词:标准粒子;米氏散射


光的散射(scattering of light)是指光通过不均匀介质时一部分光偏离原方向传播的现象。偏离原方向的光称为散射光。散射光频率不发生改变的有瑞利散射、米氏散射和大粒子散射;频率发生改变的有拉曼散射、布里渊散射和康普顿散射等。而标准粒子在光散射研究领域一般研究的是粒子的瑞利散射、米氏散射和大粒子散射,这三种散射划分是根据入射光λ与散射粒子的直径d之间的比例大小来确定的:


①当散射粒子的直径d与入射光波长λ之比(d/λ)很小,即数量级显著小于0.1 时,则属于瑞利散射,散射光强与波长的关系符合瑞利散射定律,即散射光强与入射光的波长四次方成反比,与粒径的六次方成正比。


②当散射粒子粒径与光波长可以比拟(d/λ的数量级为0.1~10)时,随着粒子直径的增大,散射光强与波长的依赖关系逐渐减弱,而且散射光强随波长的变化出现起伏,这种起伏的幅度也随着比值d/λ的增大而逐渐减少,这种散射称为米氏散射。


③当粒子足够大时(d/λ>10),散射光强基本上与波长没有关系,这种粒子的散射称为大粒子散射,也可称之为衍射散射(菲涅尔衍射与夫琅禾费衍射)。


瑞利散射可以说是米氏散射理论模型在小粒子端的近似形式,而衍射散射也可以说是米氏散射理论模型在大粒子端的近似形式,接下来我们将详细了解标准粒子应用于米氏散射理论对其光散射特性研究中,入射光波长、标粒直径以及入射光偏振角对散射光强的影响。


1

入射光波长对散射光强分布的影响

图1.1 是相对折射率m=1.589/1.333,标准粒子直径d=2μm,入射光偏振角φ=45°时,由Mie散射理论及其他相关公式编程计算得到的散射光强与散射角之间的变化关系曲线。对于直径为2μm的聚苯乙烯微球在水中的散射情况,入射光偏振角为45°时,随着入射波长λ的增大,散射光强由主要集中在前向小角度内(波长λ为0.2um时散射光强主要集中在10°散射角内)逐渐变为集中在前向稍大角度内(波长λ为0.8um时散射光强主要集中在30°散射角内),若继续增大波长,散射光强集中的角度也将继续增大。从图1.1可以看出,波长较短时散射光强主要集中在前向小角度内,并且波长越短散射光强集中的角度越小。



图1.1:当m=1.589/1.333,d=2μm,φ=45°时,对应于不同的波长,散射光强与散射角间的关系曲线。


聚苯乙烯微球直径对散射光强分布的影响

图2.1是用可见波段中的0.65μm波长的入射光,在偏振角为45°时,聚苯乙烯微球在水中的散射光强与散射角的变化关系曲线。由图可以看出,微粒直径越大散射光强越集中分布在前向小角度内,粒径大于2μm的粒子的散射光强主要集中在前向散射角约20°内,因此在此种条件下收集前向小角度的散射光强即可获得粒子的较好信息。


图2.2是入射光波长为6μm,偏振角45°时,聚苯乙烯微球在空气中的散射光强与散射角的变化关系曲线。由图可知,所用波长较大时,较大粒子的散射光强不再集中在前向小角度内而是集中的角度逐渐变大,例如粒径大于8μm的粒子的散射光强主要集中在前向散射角约40°内。


图2.1:当m=1.589/1.333, λ=0.65μm, φ=45°时,对应于不同的微粒直径,散射光强与散射角间的关系曲线。 


图2.2:当m=1.589, λ=6μm, φ=45°时,对应于不同的粒径,散射光强与散射角间的变化曲线


入射光偏振角对散射光强分布的影响

图3.1是入射光波长为0.65μm,直径为0.2μm的聚苯乙烯微球在空气中的散射光强与散射角的变化关系曲线。由图可以看出,此种情况下入射光的偏振角不同散射光强与散射角间的关系曲线有很大变化,散射光强分布比较分散,说明此时散射光强的角分布与偏振光的偏振角有关。


图3.1 当m=1.589, λ=0.65μm, φ=0.2μm时,对应于不同的偏振角,散射光强与散射角间的变化曲线。


结论

以上为应用米氏散射理论针对聚苯乙烯微球标准粒子的光散射性质进行的分析,得出以下结论:


(1)波长较短时散射光强主要集中分布在前向小角度内,并且波长越短散射光强集中分布的角度越小。收集前向小角度的散射光可大致反映粒子散射信息。


(2)进行聚苯乙烯微球标粒散射方面的研究时,应该选择可见光波段中波长较短的作为光源,这样既可以得到较好的粒子散射信息,又可以避免光源对人体造成伤害。


(3)粒子直径较大时散射光强主要集中分布在前向小角度内,并且粒子直径越大散射光强越集中分布在小角度内;若所用波长较大时,较大粒子的散射光强不再集中分布在前向小角度内而是集中分布的角度逐渐变大。


参考资料

1.李建立.基于光散射的微粒检测.烟台大学理学院硕士论文,2009:22-25.


2023-01-04 16:50:04 160 0
质谱技术在现代生物化学研究中主要有哪些应用。
 
2018-12-17 22:21:21 527 0
拉曼光谱在笔迹鉴定领域的应用

1引言

      随着市场经济的不断发展和人们法律意识的不断提高,涉及经济合同的案件越来越多,其中包括油墨的鉴定、笔迹的添加和涂改、公章印文的真伪、喷墨和激光打印字迹的鉴定、笔画先后顺序及朱墨时序的鉴定等。由于刑侦鉴定检材有限,且有重要的证据价值,以往采用的鉴定技术和方法,有的对文件物证造成一定损坏,寻找一种快速、准确、无损的检验方法显得尤为重要。而拉曼光谱技术不仅可以实现对检材的零破坏,并且能够快速、有效检出字迹的异同点,从而鉴定不同的笔迹,在司法文书鉴定中取得了令人满意的结果,鉴定结果可以为法庭诉讼提供科学依据。

2 拉曼光谱鉴定原理

      拉曼光谱技术是一种分子散射光谱技术,具有快速、灵敏和无损检验的特点,近些年来在许多领域得到了广泛的应用。拉曼光谱技术主要是借助物质分子的振动谱峰来识别物质的不同成分,因为不同的物质其分子结构不同,因此其振动谱峰也会有所不同,而振动谱峰的位置可以非常灵敏地反映出不同物质的成分变化。应用拉曼光谱技术还可以对被检客体的物质成分进行定量分析,即通过测定振动谱峰所涵盖的曲线积分面积大小来分析被检客体中所含物质组分的含量多少。因此,应用拉曼光谱技术可以实现对物质成分的识别及定量的分析。检验字迹正是利用了这一点,对笔画进行拉曼光谱扫描,确定二者是否存在成分差异,若存在差异,则证明笔迹是伪造的。

      日常书写所使用的黑色签字笔的书写色料成分有三种类型,diyi类色料是全部由炭黑组成;第二类色料是不含炭黑成分,全部由多种颜色的染料拼制而成;第三类色料是含有部分炭黑成分和其他染料组成。基于此,书写人在进行伪造字迹时使用了色料成分不同类型的笔,那么伪造部分笔画和原笔画的色料拉曼光谱一定不一致,即使是使用了色料类型相同的笔,其色料成分也会因为品牌、型号的差异导致二者拉曼光谱图不一致,从而区分开来,但仅含炭黑的除外。

3 拉曼光谱笔迹鉴定方案

      拉曼光谱技术是一种无损伤、灵敏度高、操作简捷的测试手段,实验设备采用我公司的“Finder Vista”微曼系列显微共聚焦拉曼光谱仪系统;激光器波长为532nm;光谱仪参数:500焦距,600g/mm;扫描物镜100X。采集时间与采集次数根据样本的拉曼光谱情况而定。

      采用对比试验方案,检测红、蓝、黑3组颜色的笔迹。实验采用不同厂家、品牌、型号的签字笔。实验设计如表1。

表1 不同型号、不同品牌中性笔实验设计方案

笔迹编号型号品牌
实验一(黑色)黑1号样GP-1212晨光
黑2号样A4501
黑3号样AGP13902
实验二(红色)红1号样GP-1212晨光
红2号样GP-1280
红3号样0221B真彩
实验二(蓝色)蓝1号样GP-1212晨光
蓝2号样GP-1280
蓝1号样
以恒

4 拉曼光谱分析

4.1 黑色中性笔的拉曼光谱分析

      实验时采用532nm激光器激发检测3种型号的黑色中性笔。图一中3组样品分别代表了3中型号黑色中性笔的拉曼光谱。

图1 黑色中性笔拉曼光谱图

      从图1中我们可以发现,黑色1、2、3号样品的拉曼光谱之间存在着显著差异。1、2号样品位于高波段3000cm-1附近的拉曼峰存在显著区别,1号样品在该波段存在2个拉曼特征峰,分别为2896、2950 cm-1。而2号样品只能检测到2892 cm-1特征峰。3号样品相较于1、2号样品,是较为纯净的炭黑中性笔,只能检测到位于1360、1590 cm-1附近的碳元素的拉曼特征峰。

这些光谱存在差异主要是由于不同型号的黑色中性笔油墨成分不尽相同,因此,拉曼特征峰也就有所差异。

图2 红色中性笔拉曼光谱图

      不同品牌、不同型号的红色中性笔拉曼光谱图如图2所示。从图中可以发现,红色中性笔的拉曼特征峰基本相同,说明3组物质的组成物质基本相似,但是,红色1、2号样品相较于3号样品。拉曼特征峰较为明显,说明,1、2号样所含的油墨成分较多。同时红色3号样品位于1100 cm-1附近的两个特征峰缺失,其产生的原因仍值得继续深入研究。

图3 蓝色中性笔拉曼光谱图

      不同品牌、不同型号的蓝色中性笔拉曼光谱图如图3所示。从图中可以发现,蓝色中性笔的拉曼特征峰峰位基本相同,说明3组物质的组成物质基本相似,但是,拉曼特征峰的相对强度仍有一定区别。如位于1397 cm-1的拉曼特征在蓝色2、3有很强的拉曼信号,而蓝色1号样该峰消失,表明该组分物质蓝色1号样品种没有添加。1210、1436、1457 cm-1的拉曼特征峰相对强度在3组样品中也呈现类似现象,因此,这4组拉曼特征峰可以作为区分蓝色中性笔的指标之一。

5结论

      在法庭科学领域,物证检验要求尽量无损检材,与其它分析技术相比,拉曼光谱技术优势在于其非破坏性和几乎无需样品制备,适合对未知固体、液体进行快速无损分析,因此该技术在物证鉴定方面的应用越来越广泛。

      本次研究运用Finder Vista 激光显微拉曼光谱鉴定黑、红、蓝三种市面常见的中性笔,并取得了一定成果,即可实现对纸张上的不同厂家、不同型号的中性笔进行定性分析。拉曼光谱法准确率高、分析速度快、图谱易辨认,特别是具有样品用量少,无损伤检测等优势,因此,在笔记鉴定领域具有很高的实用价值。

6参考文献

[1] 徐彻, 汤纯, 杨延勇. 显微激光拉曼光谱法鉴别黑色圆珠笔油墨的初步研究[J]. 刑事技术, 2000, 16(4): 244-245.

[2] 林建成, 李开开, 黄建同. 拉曼光谱技术检验黑色签字笔添改字迹研究[J]. 光散射学报, 2014, 26(1): 68-72.



(来源:北京卓立汉光仪器有限公司)

2019-07-12 14:10:04 892 0

5月突出贡献榜

推荐主页

最新话题