仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

OLI光纤微裂纹检测仪常用于光纤连接器微损伤检测

武汉东隆科技有限公司 2022-06-29 10:14:05 180  浏览
  • 光纤连接器是光纤与光纤之间进行可拆卸(活动)连接的器件,它把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小,这是光纤连接器的基本要求。在一定程度上,光纤连接器影响了光传输系统的可靠性和各项性能。

    据了解,市面上按连接头结构形式可分为:FC、SC、ST、LC、D4、DIN、MU、MT等等各种形式,光纤连接器端面研磨方式有PC、UPC、APC型三种。如图所示:

    而光纤接头主要有四个基本部件组成,分别是插针(插芯)、连接器体、光缆、连接装置,光主要通过插芯进行传输,若插芯损伤,会大大降低光传输效率,影响光纤通信。


    东隆科技推出的OLI光纤微裂纹检测仪,能精准定位器件内部断点、微损伤点、耦合点以及链路连接点,广泛用于光器件、光模块损伤检测。

    在测试中,我们用OLI光纤微裂纹检测仪测量LC-UPC连接头,而测试结果显示3个峰值,第一个峰值为LC-UPC端面、第二个峰值为连接头内部损伤处,距离端面5.224mm,第三个峰值为光纤接头末端对空气处。如下图所示:

    由此可见,东隆科技推出的OLI光纤微裂纹检测仪,其原理基于光学相干检测技术,利用白光的低相干性可实现光纤链路或光学器件的微损伤检测,以亚毫米级别分辨率探测光学原件内部,广泛用于光器件、光模块损伤检测以及产品批量出货合格判定。

    如需了解产品更多详情,请随时联系我们的销售工程师!

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

OLI光纤微裂纹检测仪常用于光纤连接器微损伤检测

光纤连接器是光纤与光纤之间进行可拆卸(活动)连接的器件,它把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小,这是光纤连接器的基本要求。在一定程度上,光纤连接器影响了光传输系统的可靠性和各项性能。

据了解,市面上按连接头结构形式可分为:FC、SC、ST、LC、D4、DIN、MU、MT等等各种形式,光纤连接器端面研磨方式有PC、UPC、APC型三种。如图所示:

而光纤接头主要有四个基本部件组成,分别是插针(插芯)、连接器体、光缆、连接装置,光主要通过插芯进行传输,若插芯损伤,会大大降低光传输效率,影响光纤通信。


东隆科技推出的OLI光纤微裂纹检测仪,能精准定位器件内部断点、微损伤点、耦合点以及链路连接点,广泛用于光器件、光模块损伤检测。

在测试中,我们用OLI光纤微裂纹检测仪测量LC-UPC连接头,而测试结果显示3个峰值,第一个峰值为LC-UPC端面、第二个峰值为连接头内部损伤处,距离端面5.224mm,第三个峰值为光纤接头末端对空气处。如下图所示:

由此可见,东隆科技推出的OLI光纤微裂纹检测仪,其原理基于光学相干检测技术,利用白光的低相干性可实现光纤链路或光学器件的微损伤检测,以亚毫米级别分辨率探测光学原件内部,广泛用于光器件、光模块损伤检测以及产品批量出货合格判定。

如需了解产品更多详情,请随时联系我们的销售工程师!

2022-06-29 10:14:05 180 0
光纤微裂纹检测仪(OLI)测试原理及案例分享

OLI是一款低成本高精度光学链路诊断系统。其原理基于光学相干检测技术,利用白光的低相干性可实现光纤链路或光学器件的微损伤检测。通过读取最终干涉曲线的峰值大小,精确测量整个扫描范围内的回波损耗, 进而判断此测量范围内链路的性能。

该系统轻松查找并精准定位器件内部断点、微损伤点以及链路连接 点。其事件点定位精度高达几十微米,最低可探测到-80dB光学弱信号, 广泛用于光纤或光器件损伤检测以及产品批量出货合格判定。


针对光纤微裂纹检测仪(OLI)我们有了初步的认识,那它在实际应用中有哪些特点?

测试原理

光纤微裂纹检测仪(OLI)基于光学相干检测技术与光外差检测技术相结合,其基本原理如下图所示。

图1. OLI光纤微裂纹检测基本原理

光源发出宽带连续光被耦合器分为两路,其中一束作为参考光,另一束作为探测信号光发射到待测光纤中。探测光在光纤中向前传播时会不断产生回波信号,这些回波信号光与参考光经过反射镜后反射回耦合器发生拍频干涉,并被光电探测器检测。电机控制反射镜Z移动进而改变参考光光程。

光电探测器检测到的光电流可以表示为:

其中,β为光电转换系数。上述表达式中前三项均被滤除(两项为直流项,一项为高频项),只剩最后的拍频项。WL-WS为拍频频率fb,通过设计带通光电转换电路,检测拍频信号。

图2. OLI距离-反射率曲线

依照光干涉理论,要发生干涉现象,其光程差需在相干长度范围内,而宽谱光的相干长度非常短,当反射镜移动时,从DUT返回的回波信号与反射镜相等距离的反射信号发生拍频。通过处理最终的拍频信号,DUT链路上每点反射回来信号的强度可以映射为该点的反射率(即曲线纵坐标),DUT的实际干涉位置对应反射镜Z移动的相应距离(即曲线横坐标),从而形成了OLI距离-反射率曲线。

测试案例

//案例1:测量FC/APC接头

图3. 盖紧的防尘帽



图4. 测试结果



防尘帽盖紧测量结果显示三个峰,第一个峰为FC/APC接头端面反射、第二个峰和第三个峰为防尘帽尾端两个反射,如图5所示。第一个峰和第二个峰之间相距1.47mm。

图5. 峰值示意图

图6. 防尘帽向后移动

向后移动防尘帽,测试结果如图7所示有三个峰,后两个峰值有所降低,因为光在空气中传输距离变长,损耗变大,第一个峰和第二个峰间距变为3.40mm,第二个峰和第三个峰的距离不变,峰值位置符合上述分析。

图7. 测试结果

以上峰值间距在折射率为n₁=1.467(设备默认折射率)下测得,则防尘帽向后移动距离L₁=(3.40mm-1.47mm)=1.93mm,但光在空气传播,折射率为n₂=1,所以防尘帽实际向后移动距离L₂=L₁*n₁/n₂=2.83mm。



//案例2:G-lens长度测量

图8. 单波长渐变折射率透镜与插芯耦合示意图

端面为斜8°的单波长渐变折射率透镜(G-lens)与带光纤的插芯耦合在一起,测量G-lens长度。

图9. 实际示意图

图10. OLI测量结果

测试结果如图10所示,第一个峰值为插芯与G-lens耦合面反射峰,第二个峰值为G-lens尾端反射峰,测试结果中dx=2.9mm为G-lens光程长度,是在折射率为n₁=1.467(设备默认折射率)下测得,而G-lens的实际折射率为n₂=1.6,则G-lens的实际长度为L=dx*n₁/n₂=2.66mm。

结论

光纤微裂纹检测仪(OLI)可以精确定位整个扫描范围内的回波损耗,实现微米级光纤链路或光学器件的微损伤检测。

如需了解更多详情,请随时联系我们的销售工程师!

2022-03-08 10:26:32 454 0
OLI光纤微裂纹检测仪能有效检测FA耦合面测量

FA简称光纤阵列,是把光纤按照一定的间距排列固定起来形成的光器件,它是光进出光器件的通道。光纤阵列分为单芯光纤阵列(SFA)和多芯光纤阵列(MFA),光纤阵列有常规FA、45°光纤悬出FA、光纤转90°FA。


45°FA利用端面全反射使光路90°转角与VCSEL或者PD耦合,这种方法耦合效率高,但苦于45°端面研磨工艺有较大难度,工艺制造成本高,生产良率不高。光纤转90°FA通常与硅光芯片中的光栅进行耦合,不过直接对准耦合,会存在一定的角度失配,尽管国内厂商经过这几年的努力与克服,已有不少厂家能够批量制造提高良率,但FA耦合面检测一直是通信行业所关注的热点话题。

FA耦合一般都是在一些很小的尺寸里面,例如光器件、光模块、硅光芯片等等,这些器件级的检测对设备要求极高。而OLI光纤微裂纹检测仪是专门针对这种微小尺寸的检测利器,其空间分辨率高达10微米,能实现芯片内部结构可视化。

OLI测量FA耦合面

多芯FA耦合面测量,测试结果显示该耦合位置回损为-62dB,耦合情况良好

由此可见,OLI光纤微裂纹检测仪能精准定位器件内部断点、微损伤点、耦合面以及链路连接点,以亚毫米级别分辨率探测光学原件内部,且广泛用于光器件、光模块损伤检测以及产品批量出货合格判定。

如需了解更多产品详情,请随时联系

2022-06-01 15:29:21 177 0
非接触式透镜厚度测量利器光纤微裂纹检测仪(OLI)

在光学领域,透镜是光学系统中最重要的组成元件,现代的光学仪器对透镜的成像质量和光程控制有很高的要求。尤其在透镜的制造要求上,加工出的透镜尺寸,其公差必须控制在允许范围内,因此需要在生产线上形成对透镜厚度实时、自动、精准的检测,这对提高产线的生产效率和控制产品的质量具有重要意义。


目前,测量透镜中心厚度的方法主要分为接触式测量和非接触式测量。接触式测量有很多弊端,如不能准确找到透镜的中心点(最高点或最低点),测量时需要来回移动透镜,效率不高,容易划伤透镜的玻璃表面。而非接触测量一般采用光学的方法,能有效避免这些测量缺陷,由东隆科技自研的光纤微裂纹检测仪(OLI)不仅可以快速精准测试出透镜的厚度,而且也不会对透镜表面造成划伤。


下面,让我们学习下光纤微裂纹检测仪(OLI)是如何高效的测量手机镜头的折射率和厚度。

光纤微裂纹检测仪(OLI)

1、 OLI测量透镜厚度

使用光纤微裂纹检测仪(OLI)测量凸透镜中心厚度,如图1.所示,准备一根匹配好测试长度的光纤跳线,一端接入设备DUT口,另外一端垂直对准透镜,让接头和透镜之间预留一定距离,同时使用OLI进行测量。

图1. 测量系统示意图


测量结果如图2.所示,图中共有3个峰值,第1个峰值为FC/APC接头端面的反射,第2个峰值为空气到透镜第一个面的反射,第3个峰值为透镜第二个面到空气的反射。

图2.凸透镜厚度测试结果图


峰值1和2之间的距离为3.876mm,峰值2和3之间的距离为20.52mm,图2中测得各峰值间距是在设备默认折射率n1=1.467下测得,而空气的折射率n2=1玻璃透镜的折射率n3=1.6,所以空气段的实际长度为:L空=3.876*n1/n2=5.686mm,透镜的实际厚度为L镜=20.52*n1/n3=18.814mm。使用游标卡尺测量凸透镜的厚度为19.02mm,和测试结果偏差0.2mm,可能是玻璃透镜的实际折射率与计算所用到的折射率1.6有偏差导致的。


2、OLI测量镜底折射率和厚度

将图1.测量系统中的凸透镜换成手机摄像头的玻璃镜底,使用光纤微裂纹检测仪(OLI)对3种不同厚度的玻璃镜底进行测量,图3.为测试玻璃镜底实物图,用游标卡尺测量三种玻璃镜底的厚度分别为0.7mm、1.5mm和2.0mm。

图3.玻璃镜底实物图


光纤微裂纹检测仪(OLI)测量结果如图4.所示,为5次测量平均后的结果,从图中可以看出三种镜底的测试厚度分别为1.075mm、2.301mm、3.076mm。

图4.三种镜底厚度测试结果图


三种玻璃镜底的材质一样其折射率一致,图4.中设备测得玻璃镜底厚度与游标卡尺测得厚度不一致,因为是在设备默认折射率n1=1.467下测得、实际玻璃镜底折射率为n镜=1.075*1.467/0.7=2.253,将设备折射率修改为2.253直接得出三款玻璃镜底的厚度为:0.699mm 、1.498mm、2.003mm,设备测得结果与游标卡尺测量偏差不超过5um,证明OLI非接触测试透镜厚度十分精准。


3、结论

使用光纤微裂纹检测仪(OLI)非接触测试各种透镜的折射率和厚度,其测量精度在亚微米级别,相对于接触式测量透镜厚度,精度提升很大,同时也避免测量时透镜表面被划伤。将光纤微裂纹检测仪(OLI)非接触式测量透镜厚度的方法应用到生产车间内,可形成自动化检测产线,无需人为干预即可准确甄别出质量不合格产品,极大提升生产效率。

2022-11-08 10:08:09 254 0
光纤微裂纹诊断仪(OLI)如何快速对硅光芯片耦合质量检测?

硅光是以光子和电子为信息载体的硅基电子大规模集成技术,能够突破传统电子芯片的极限性能,是5G通信、大数据、人工智能、物联网等新型产业的基础支撑。光纤到硅基耦合是芯片设计十分重要的一环,耦合质量决定着集成硅光芯片上光信号和外部信号互联质量。耦合过程中最困难的地方在于两者光模式尺寸不匹配,硅光芯片中光模式约为几百纳米,而光纤中则为几个微米,几何尺寸上巨大差异造成模场的严重失配。准确测量耦合位置质量及硅光芯片内部链路情况,对硅光芯片设计和生产都变得十分有意义。


光纤微裂纹诊断仪(OLI)对硅光芯片耦合质量和内部裂纹损伤检测,非常有优势,可精准探测到光链路中每个事件节点,具有灵敏度高、定位精准、稳定性高、简单易用等特点,是硅光芯片检测不二选择。


OLI测试硅光芯片耦合连接处质量

使用OLI测量硅光芯片耦合连接处质量,分别测试正常和异常样品,图1为硅光芯片耦合连接处实物图。

图1硅光芯片耦合连接处实物图


OLI测试结果如图2所示,图2(a)为耦合正常样品,图2(b)为耦合异常样品。从图中可以看出第一个峰值为光纤到硅基波导耦合处反射,第二个峰值为硅基波导到空气处反射,对比两幅图可以看出耦合正常的回损约为-61dB,耦合异常,耦合处回损较大,约为-42dB,可以通过耦合处回损值来判断耦合质量。

(a)耦合正常样品

(b)耦合异常样品

图2 OLI测试耦合连接处结果


OLI测试硅光芯片内部裂纹

使用OLI测量硅光芯片内部情况,分别测试正常和内部有裂纹样品,图3为耦合硅光芯片实物图。

图3.耦合硅光芯片实物图

OLI测试结果如图4所示,图4(a)为正常样品,图中第一个峰值为光纤到波导耦合处反射,第二个峰值为连接处到硅光芯片反射,第三个峰为硅光芯片到空气反射;图4(b)为内部有裂纹样品,相较于正常样品再硅光芯片内部多出一个峰值,为内部裂纹表现出的反射。使用OLI能精准测试出硅光芯片内部裂纹反射和位置信息。

(a)正常样品

(b)内部有裂纹样品

图4.OLI测试耦合硅光芯片结果


因此,使用光纤微裂纹诊断仪(OLI)测试能快速评估出硅光芯片耦合质量,并精准定位硅光芯片内部裂纹位置及回损信息。OLI以亚毫米级别分辨率探测硅光芯片内部,可广泛用于光器件、光模块损伤检测以及产品批量出货合格判定。

2023-08-04 11:22:00 126 0
光纤中光信号受到损伤的三个主要原因是什么
 
2018-11-24 02:08:57 289 0
手持甲烷微漏检测仪用于哪些领域?

手持甲烷微漏检测仪用于哪些领域?

2020-12-18 09:54:35 164 0
光纤怎么与光纤连接器连接
 
2010-11-07 02:37:16 458 4
HNO3与什么常用于检测氯离子存在
 
2014-12-20 00:00:02 556 4
光纤连接器按连接器结构可分为哪些
 
2017-04-23 09:59:43 324 1
现场组装光纤活动连接器和光纤活动连接器一样吗?
就是2种产品的名字是同一个东西吗?... 就是2种产品的名字是同一个东西吗? 展开
2012-07-09 05:18:09 451 6
称重传感器常用于哪些方面?
 
2017-11-13 16:24:29 254 1
光纤跳线和光纤连接器有什么区别
 
2018-11-23 17:17:35 409 0
光纤连接器和射频同轴连接器的区别
经常把光纤连接器和射频同轴连接器搞混,在这里想问一下光纤连接器与射频同轴连接器的本质区别是什么,分别有什么作用呢?
2013-07-15 00:46:12 581 3
MTP光纤连接器为什么被称为高性能MPO连接器
 
2018-07-15 22:46:45 488 1
超声波检测裂纹原理
 
2017-11-23 16:21:14 1043 1
光纤快速连接器有几种?
我听人说什么直通、预埋、直熔的,但是他们具体区别在哪呢?好像还有人叫光纤现场连接器?是同一款产品吗?... 我听人说什么直通、预埋、直熔的,但是他们具体区别在哪呢? 好像还有人叫光纤现场连接器?是同一款产品吗? 展开
2012-08-05 12:53:47 564 4
光纤连接器的一般结构
 
2018-11-17 05:29:19 380 0
光纤活动连接器的性能
 
2018-05-17 18:13:20 354 1
光纤活动连接器的概述
 
2018-11-17 07:08:25 428 0

5月突出贡献榜

推荐主页

最新话题