仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

低场核磁法用于高分子相容性研究

苏州纽迈分析仪器 2023-01-06 18:46:22 187  浏览
  • 低场核磁法用于高分子相容性研究

    相容性的定义:

    相容性是指共混物各组分彼此相互容纳,形成宏观均匀材料的能力。大量的实际研究结果表明,不同聚合物对之间相互容纳的能力,是有着很悬殊的差别的。某些聚合物对之间,可以具有及好的相容性;而另一些聚合物对之间则只有有限的相容性;还有一些聚合物对之间几乎没有相容性。由此,可按相容的程度划分为完荃相容、部分相容和不相容。相应的聚合物对,可分别称为完荃相容体系、部分相容体系和不相容体系。

    化工领域相容性

    相容性好,是指添加剂(如溶剂、增塑剂等)能长期、稳定、均匀地存在于系统中。相容性不好,液态树脂会出现分层现象。塑料制品的析出物若为固体,称为“喷霜”,若为液体,称为“出汗”,均影响产品质量和外观。

    聚合物的相容性

    聚合物对之间的相容性,可以通过聚合物共混物的形态反映出来。完荃相容的聚合物共混体系,其共混物可形成均相体系。因而,形成均相体系的判据亦可作为聚合物对完荃相容的判据。

    纽迈PQ001系列低场核磁共振分析仪

    低场核磁法用于高分子相容性研究基本原理:

    低场核磁法的主要检测对象是氢核(1H),由于聚合物中不同链段上的H所处的周围环境不一致,H的自旋磁矩(核自旋)存在差异。施加射频脉冲后,自旋系统在恢复热平衡状态的过程中表现出来的弛豫行为不同,通过弛豫时间的差异可以体系聚合物的分子动力学信息。而分子分子动力学信息直接与聚合物的交联密度、老化、填充剂相关。

    在聚合物种,当两种聚合相互接触,聚合物链彼此相容的情况下,物理交换在T2弛豫过程的时间尺度上通常是缓慢的。由于物理吸附,聚合物链大部分固定化。分子流动性也受到很大限制。通过T2弛豫的变化能非常灵敏的检测到聚合物是否相容。

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

低场核磁法用于高分子相容性研究

低场核磁法用于高分子相容性研究

相容性的定义:

相容性是指共混物各组分彼此相互容纳,形成宏观均匀材料的能力。大量的实际研究结果表明,不同聚合物对之间相互容纳的能力,是有着很悬殊的差别的。某些聚合物对之间,可以具有及好的相容性;而另一些聚合物对之间则只有有限的相容性;还有一些聚合物对之间几乎没有相容性。由此,可按相容的程度划分为完荃相容、部分相容和不相容。相应的聚合物对,可分别称为完荃相容体系、部分相容体系和不相容体系。

化工领域相容性

相容性好,是指添加剂(如溶剂、增塑剂等)能长期、稳定、均匀地存在于系统中。相容性不好,液态树脂会出现分层现象。塑料制品的析出物若为固体,称为“喷霜”,若为液体,称为“出汗”,均影响产品质量和外观。

聚合物的相容性

聚合物对之间的相容性,可以通过聚合物共混物的形态反映出来。完荃相容的聚合物共混体系,其共混物可形成均相体系。因而,形成均相体系的判据亦可作为聚合物对完荃相容的判据。

纽迈PQ001系列低场核磁共振分析仪

低场核磁法用于高分子相容性研究基本原理:

低场核磁法的主要检测对象是氢核(1H),由于聚合物中不同链段上的H所处的周围环境不一致,H的自旋磁矩(核自旋)存在差异。施加射频脉冲后,自旋系统在恢复热平衡状态的过程中表现出来的弛豫行为不同,通过弛豫时间的差异可以体系聚合物的分子动力学信息。而分子分子动力学信息直接与聚合物的交联密度、老化、填充剂相关。

在聚合物种,当两种聚合相互接触,聚合物链彼此相容的情况下,物理交换在T2弛豫过程的时间尺度上通常是缓慢的。由于物理吸附,聚合物链大部分固定化。分子流动性也受到很大限制。通过T2弛豫的变化能非常灵敏的检测到聚合物是否相容。

2023-01-06 18:46:22 187 0
低场核磁法用于辅料相容性研究

低场核磁法用于辅料相容性研究

相容性的定义:

相容性是指共混物各组分彼此相互容纳,形成宏观均匀材料的能力。大量的实际研究结果表明,不同聚合物对之间相互容纳的能力,是有着很悬殊的差别的。某些聚合物对之间,可以具有及好的相容性;而另一些聚合物对之间则只有有限的相容性;还有一些聚合物对之间几乎没有相容性。由此,可按相容的程度划分为完荃相容、部分相容和不相容。相应的聚合物对,可分别称为完荃相容体系、部分相容体系和不相容体系。

化工领域相容性

相容性好,是指添加剂(如溶剂、增塑剂等)能长期、稳定、均匀地存在于系统中。相容性不好,液态树脂会出现分层现象。塑料制品的析出物若为固体,称为“喷霜”,若为液体,称为“出汗”,均影响产品质量和外观。

聚合物的相容性

聚合物对之间的相容性,可以通过聚合物共混物的形态反映出来。完荃相容的聚合物共混体系,其共混物可形成均相体系。因而,形成均相体系的判据亦可作为聚合物对完荃相容的判据。

纽迈PQ001系列低场核磁共振分析仪

低场核磁法用于辅料相容性研究基本原理:

低场核磁法的主要检测对象是氢核(1H),由于聚合物中不同链段上的H所处的周围环境不一致,H的自旋磁矩(核自旋)存在差异。施加射频脉冲后,自旋系统在恢复热平衡状态的过程中表现出来的弛豫行为不同,通过弛豫时间的差异可以体系聚合物的分子动力学信息。而分子分子动力学信息直接与聚合物的交联密度、老化、填充剂相关。

在聚合物种,当两种聚合相互接触,聚合物链彼此相容的情况下,物理交换在T2弛豫过程的时间尺度上通常是缓慢的。由于物理吸附,聚合物链大部分固定化。分子流动性也受到很大限制。通过T2弛豫的变化能非常灵敏的检测到聚合物是否相容。

2022-12-30 14:53:34 167 0
低场核磁技术用于硅橡胶相容性研究

低场核磁技术用于硅橡胶相容性研究

相容性的定义:

相容性是指共混物各组分彼此相互容纳,形成宏观均匀材料的能力。大量的实际研究结果表明,不同聚合物对之间相互容纳的能力,是有着很悬殊的差别的。某些聚合物对之间,可以具有及好的相容性;而另一些聚合物对之间则只有有限的相容性;还有一些聚合物对之间几乎没有相容性。由此,可按相容的程度划分为完荃相容、部分相容和不相容。相应的聚合物对,可分别称为完荃相容体系、部分相容体系和不相容体系。

化工领域相容性

相容性好,是指添加剂(如溶剂、增塑剂等)能长期、稳定、均匀地存在于系统中。相容性不好,液态树脂会出现分层现象。塑料制品的析出物若为固体,称为“喷霜”,若为液体,称为“出汗”,均影响产品质量和外观。

聚合物的相容性

聚合物对之间的相容性,可以通过聚合物共混物的形态反映出来。完荃相容的聚合物共混体系,其共混物可形成均相体系。因而,形成均相体系的判据亦可作为聚合物对完荃相容的判据。

纽迈PQ001系列低场核磁共振分析仪

低场核磁技术用于硅橡胶相容性研究基本原理:

低场核磁法的主要检测对象是氢核(1H),由于聚合物中不同链段上的H所处的周围环境不一致,H的自旋磁矩(核自旋)存在差异。施加射频脉冲后,自旋系统在恢复热平衡状态的过程中表现出来的弛豫行为不同,通过弛豫时间的差异可以体系聚合物的分子动力学信息。而分子分子动力学信息直接与聚合物的交联密度、老化、填充剂相关。

在聚合物种,当两种聚合相互接触,聚合物链彼此相容的情况下,物理交换在T2弛豫过程的时间尺度上通常是缓慢的。由于物理吸附,聚合物链大部分固定化。分子流动性也受到很大限制。通过T2弛豫的变化能非常灵敏的检测到聚合物是否相容。

2023-01-13 21:53:27 162 0
低场核磁技术用于增塑剂相容性研究

低场核磁技术用于增塑剂相容性研究

相容性的定义:

相容性是指共混物各组分彼此相互容纳,形成宏观均匀材料的能力。大量的实际研究结果表明,不同聚合物对之间相互容纳的能力,是有着很悬殊的差别的。某些聚合物对之间,可以具有及好的相容性;而另一些聚合物对之间则只有有限的相容性;还有一些聚合物对之间几乎没有相容性。由此,可按相容的程度划分为完荃相容、部分相容和不相容。相应的聚合物对,可分别称为完荃相容体系、部分相容体系和不相容体系。

化工领域相容性

相容性好,是指添加剂(如溶剂、增塑剂等)能长期、稳定、均匀地存在于系统中。相容性不好,液态树脂会出现分层现象。塑料制品的析出物若为固体,称为“喷霜”,若为液体,称为“出汗”,均影响产品质量和外观。

聚合物的相容性

聚合物对之间的相容性,可以通过聚合物共混物的形态反映出来。完荃相容的聚合物共混体系,其共混物可形成均相体系。因而,形成均相体系的判据亦可作为聚合物对完荃相容的判据。

纽迈PQ001系列低场核磁共振分析仪

低场核磁技术用于增塑剂相容性研究基本原理:

低场核磁法的主要检测对象是氢核(1H),由于聚合物中不同链段上的H所处的周围环境不一致,H的自旋磁矩(核自旋)存在差异。施加射频脉冲后,自旋系统在恢复热平衡状态的过程中表现出来的弛豫行为不同,通过弛豫时间的差异可以体系聚合物的分子动力学信息。而分子分子动力学信息直接与聚合物的交联密度、老化、填充剂相关。

在聚合物种,当两种聚合相互接触,聚合物链彼此相容的情况下,物理交换在T2弛豫过程的时间尺度上通常是缓慢的。由于物理吸附,聚合物链大部分固定化。分子流动性也受到很大限制。通过T2弛豫的变化能非常灵敏的检测到聚合物是否相容。

2023-01-16 22:20:49 192 0
低场核磁技术用于聚氨酯相容性研究

低场核磁技术用于聚氨酯相容性研究

相容性的定义:

相容性是指共混物各组分彼此相互容纳,形成宏观均匀材料的能力。大量的实际研究结果表明,不同聚合物对之间相互容纳的能力,是有着很悬殊的差别的。某些聚合物对之间,可以具有及好的相容性;而另一些聚合物对之间则只有有限的相容性;还有一些聚合物对之间几乎没有相容性。由此,可按相容的程度划分为完荃相容、部分相容和不相容。相应的聚合物对,可分别称为完荃相容体系、部分相容体系和不相容体系。

化工领域相容性

相容性好,是指添加剂(如溶剂、增塑剂等)能长期、稳定、均匀地存在于系统中。相容性不好,液态树脂会出现分层现象。塑料制品的析出物若为固体,称为“喷霜”,若为液体,称为“出汗”,均影响产品质量和外观。

聚合物的相容性

聚合物对之间的相容性,可以通过聚合物共混物的形态反映出来。完荃相容的聚合物共混体系,其共混物可形成均相体系。因而,形成均相体系的判据亦可作为聚合物对完荃相容的判据。

纽迈PQ001系列低场核磁共振分析仪

低场核磁技术用于聚氨酯相容性研究基本原理:

低场核磁法的主要检测对象是氢核(1H),由于聚合物中不同链段上的H所处的周围环境不一致,H的自旋磁矩(核自旋)存在差异。施加射频脉冲后,自旋系统在恢复热平衡状态的过程中表现出来的弛豫行为不同,通过弛豫时间的差异可以体系聚合物的分子动力学信息。而分子分子动力学信息直接与聚合物的交联密度、老化、填充剂相关。

在聚合物种,当两种聚合相互接触,聚合物链彼此相容的情况下,物理交换在T2弛豫过程的时间尺度上通常是缓慢的。由于物理吸附,聚合物链大部分固定化。分子流动性也受到很大限制。通过T2弛豫的变化能非常灵敏的检测到聚合物是否相容。

2023-01-18 17:51:29 178 0
低场核磁技术用于涂料相容性研究

低场核磁技术用于涂料相容性研究

相容性的定义:

相容性是指共混物各组分彼此相互容纳,形成宏观均匀材料的能力。大量的实际研究结果表明,不同聚合物对之间相互容纳的能力,是有着很悬殊的差别的。某些聚合物对之间,可以具有及好的相容性;而另一些聚合物对之间则只有有限的相容性;还有一些聚合物对之间几乎没有相容性。由此,可按相容的程度划分为完荃相容、部分相容和不相容。相应的聚合物对,可分别称为完荃相容体系、部分相容体系和不相容体系。

化工领域相容性

相容性好,是指添加剂(如溶剂、增塑剂等)能长期、稳定、均匀地存在于系统中。相容性不好,液态树脂会出现分层现象。塑料制品的析出物若为固体,称为“喷霜”,若为液体,称为“出汗”,均影响产品质量和外观。

聚合物的相容性

聚合物对之间的相容性,可以通过聚合物共混物的形态反映出来。完荃相容的聚合物共混体系,其共混物可形成均相体系。因而,形成均相体系的判据亦可作为聚合物对完荃相容的判据。

纽迈PQ001系列低场核磁共振分析仪

低场核磁技术用于涂料相容性研究基本原理:

低场核磁法的主要检测对象是氢核(1H),由于聚合物中不同链段上的H所处的周围环境不一致,H的自旋磁矩(核自旋)存在差异。施加射频脉冲后,自旋系统在恢复热平衡状态的过程中表现出来的弛豫行为不同,通过弛豫时间的差异可以体系聚合物的分子动力学信息。而分子分子动力学信息直接与聚合物的交联密度、老化、填充剂相关。

在聚合物种,当两种聚合相互接触,聚合物链彼此相容的情况下,物理交换在T2弛豫过程的时间尺度上通常是缓慢的。由于物理吸附,聚合物链大部分固定化。分子流动性也受到很大限制。通过T2弛豫的变化能非常灵敏的检测到聚合物是否相容。

2023-01-29 21:00:20 172 0
低场核磁法研究高分子溶胀过程

低场核磁法研究高分子溶胀过程

溶胀是指溶剂分子扩散进入高分子内部,使其体积膨胀的现象。溶胀行为是高分子材料的一项重要参数,高分子材料的平衡溶胀率会影响到材料中物质的扩散系数,表面润湿性和机械强度等。很多研宄将溶胀特性作为一个设计参数来制备具有特殊应用的智能材料。

溶胀是高分子材料特有的现象,其原因在于溶剂分子与高分子尺寸相差悬殊,分子运动速度相差很大,溶剂分子扩散速度较快,而高分子向溶剂中的扩散缓慢。因此,高分子溶解时首先是溶剂分子渗透进入高分子材料内部,使其体积增大,即溶胀。随着溶剂分子的不断渗入,溶胀的高分子材料体积不断增大,大分子链段运动增强,再通过链段的协调运动而达到整个大分子链的运动,大分子逐渐进入溶液中,形成热力学稳定的均相体系,即溶解阶段,如下图所示。

溶胀有两种:

无限溶胀:线形聚合物溶于良好的溶剂中,能无限制吸收溶剂,直到溶解成均相溶液为止。所以溶解也可看成是聚合物无限溶胀的结果。例:天然橡胶在汽油中;PS在苯中。

有限溶胀:对于交联聚合物以及在不良溶剂中的线形聚合物来讲,溶胀只能进行到一定程度为止,以后无论与溶剂接触多久,吸入溶剂的量不再增加,而达到平衡,体系始终保持两相状态。

低场核磁法研究高分子溶胀过程:

低场核磁共振(LF-NMR)在研究基于水迁移率的聚合物网络的水传输和微观结构方面具有巨大潜力。与高分辨率核磁共振不同,低场核磁共振(LF-NMR)主要用于通过测量弛豫时间来阐明反映结构异质性和相互作用的分子迁移率。研究表明,低场核磁共振(LF-NMR)是一种快速、无创、无损的测定水组分分布的方法。

2022-10-15 17:16:28 162 0
低场核磁法用于药物晶型研究

低场核磁法用于药物晶型研究

药物晶型的研究现状

多晶型现象广泛存在于固体化合物中,药物多晶型会影响固体药物的产品质量和治疗效果,因此对于这方面的研究逐渐得到国内外众多研究者的重视。现如今,固体药物的多晶型研究己经成为新药开发和新药报批过程中的重要组成部分。药物的晶型研究在新药研发中发挥着重要的角色,被创新药研发公司用来作为药物提高成药性、降低开发风险、保证产品质量和建立有效专利壁垒等的重要手段,甚至对药物开发成败起决定性作用。

固体药物的多晶型现象

固体药物一般都具有多种形态,如多晶型、溶剂化物、共晶等。广义上多晶型就是一种物质能以两种或两种以上不同的晶体结构存在的现象。固体药物的形态可以分为晶态和非晶态,主要根据是其内部质点(如原子、离子或分子)在结构中排列方式的有序或无序。晶型不同可能会影响药物在体内的溶出速率和吸收速度,从而影响该药物生物利用度、临床疗效和安全性。

多晶型固体药物对生物利用度有哪些影响?

药物多晶型按稳定性主要分为3种,即稳定型、亚稳型和不稳定型。稳定型具有熵值小,熔点高,化学稳定性好等优点,但是这种稳定性晶型的溶解度和溶出速率较低,生物利用度差。不稳定型正好相反,而介于两者之间的亚稳型会随着贮存时间会向稳定型转变。固体药物由于样品晶型的不同,其理化性质,如熔点、密度、硬度、晶体外形、制剂的稳定性等,均会发生显著变化。固体药物因为多晶型自由能之间差异与分子间作用力的不同,导致样品溶解度、药物溶出度和生物利用度的不同,进而影响药物吸收速率,使药物的疗效发生变化。

低场核磁法用于药物晶型研究的原理:

结晶和非结晶API的T1弛豫行为存在显著差异,测量T1弛豫时间是区分结晶态和非晶态的有效参数。结晶形式的T1值大于非结晶形式的T1值。众所周知,弛豫时间和旋转相关时间之间的关系反映了化合物的分子运动性。一般来说,在固态下,分子运动性越低,T1弛豫时间越长。使用时域核磁共振观察到的T1弛豫行为对于评估API粉末的结晶状态非常有效。


低场核磁法用于药物晶型研究的定性研究:

在特定的温度下,晶型稳定的药物,对应的T1弛豫时间基本保持不变。当发生晶型转变时,时域核磁测得的T1弛豫时间发生对应的变化。根据测定的T1弛豫行为,可以监测物理混合物中结晶专题与晶型转变过程。


纽迈PQ001系列低场核磁共振分析仪

2023-02-08 14:19:47 138 0
低场核磁法用于晶型药物研究

低场核磁法用于晶型药物研究

晶型药物的研究现状

多晶型现象广泛存在于固体化合物中,药物多晶型会影响固体药物的产品质量和治liao效果,因此对于这方面的研究逐渐得到国内外众多研究者的重视。现如今,固体药物的多晶型研究己经成为新药开发和新药报批过程中的重要组成部分。药物的晶型研究在新药研发中发挥着重要的角色,被创新药研发公司用来作为药物提高成药性、降低开发风险、保证产品质量和建立有效砖利壁垒等的重要手段,甚至对药物开发成败起决定性作用。

固体药物的多晶型现象

固体药物一般都具有多种形态,如多晶型、溶剂化物、共晶等。广义上多晶型就是一种物质能以两种或两种以上不同的晶体结构存在的现象。固体药物的形态可以分为晶态和非晶态,主要根据是其内部质点(如原子、离子或分子)在结构中排列方式的有序或无序。晶型不同可能会影响药物在体内的溶出速率和吸收速度,从而影响该药物生物利用度、临床疗效和安全性。

多晶型固体药物对生物利用度有哪些影响?

药物多晶型按稳定性主要分为3种,即稳定型、亚稳型和不稳定型。稳定型具有熵值小,熔点高,化学稳定性好等优点,但是这种稳定性晶型的溶解度和溶出速率较低,生物利用度差。不稳定型正好相反,而介于两者之间的亚稳型会随着贮存时间会向稳定型转变。固体药物由于样品晶型的不同,其理化性质,如熔点、密度、硬度、晶体外形、制剂的稳定性等,均会发生显著变化。固体药物因为多晶型自由能之间差异与分子间作用力的不同,导致样品溶解度、药物溶出度和生物利用度的不同,进而影响药物吸收速率,使药物的疗效发生变化。

低场核磁法用于晶型药物研究的原理:

结晶和非结晶API的T1弛豫行为存在显著差异,测量T1弛豫时间是区分结晶态和非晶态的有效参数。结晶形式的T1值大于非结晶形式的T1值。大家都知道,弛豫时间和旋转相关时间之间的关系反映了化合物的分子运动性。一般来说,在固态下,分子运动性越低,T1弛豫时间越长。使用时域核磁共振观察到的T1弛豫行为对于评估API粉末的结晶状态非常有效。

低场核磁法用于晶型药物研究的定性研究:

在特定的温度下,晶型稳定的药物,对应的T1弛豫时间基本保持不变。当发生晶型转变时,时域核磁测得的T1弛豫时间发生对应的变化。根据测定的T1弛豫行为,可以监测物理混合物中结晶专题与晶型转变过程。

纽迈PQ001系列低场核磁共振分析仪

2023-02-12 17:58:32 74 0
低场核磁技术用于橡胶老化研究

低场核磁技术用于橡胶老化研究

橡胶老化现象

由于橡胶制品的使用越来越频繁,橡胶产品在多数人的印象中是性能优异且各方面使用体验都很好,许多老客户也慢慢感觉到橡胶制品老化的现象,橡胶制品为什么会出现老化现象。

橡胶产品为什么会出现老化?

橡胶树脂的粘合性比许多橡胶都要高,但橡胶同其它橡胶一样,也会发生老化现象,由于内部分子链断裂,使橡胶的性能发生了很大的变化。对于橡塑制品来说,橡胶产品危害蕞大的就是紫外线,紫外线会直接导致橡胶分子链的断裂,这是因为橡胶制品可吸收光能使橡胶内产生自由分子。

 

橡胶产品老化的原因主要有以下三点:

1. 经常有高温或高温环境。高温度会加速橡胶材料的氧化环境,从而导致老化。

2. 化学因素。归根结底,橡胶材料是一种化学物质,有些化学因素会加速其老化。

3. 臭氧。硅材料很怕臭氧,会使橡胶制品的性能迅速下降,老化得很快。

橡胶老化的试验方法:

橡胶老化是橡胶性能受损的主要原因之一。由于产品的配方和使用条件各异,老化历程快慢不一,所以,需要通过检测技术对橡胶样品进行测试,以评定橡胶老化的程度及其对性能的影响。低场核磁技术可用于橡胶老化检测。

低场核磁技术研究橡胶老化基本原理:

纽迈VTMR系列低场核磁共振分析仪

低场核磁共振技术是通过测定恒定磁场强度下样品中1H的弛豫时间,从而获得分子结构动态信息的方法。其基本原理是通过施加射频脉冲给予处于恒定磁场中的样品,使氢质子发生共振,质子所吸收的射频波能量以非辐射的方式释放后返回到基态,此过程被称为弛豫过程。弛豫又可分为横向弛豫和纵向弛豫,样品内部氢质子所处物理化学环境及存在状态决定了弛豫时间的长短。从物理机制上,核磁弛豫过程是自旋氢原子核与环境之间通过相互作用进行能量交换的过程。核磁共振是自旋不为零的原子在静磁场中被磁化后,与特定射频场产生共振吸收现象,吸收射频脉冲能量后自旋核与周围物质相互作用,释放能量,并恢复初始状态过程。

橡胶老化是交联体系发生变化的综合过程,核磁共振的弛豫机制对这种变化具有高敏感性,其主要表现为横向弛豫时间T2随反应时间延长的规律性变化。因此通过研究老化过程中橡胶样品的弛豫时间变化规律及其与老化性能的关系,就可以间接评估橡胶老化的特性。

2023-01-11 16:28:57 175 0
低场核磁法用于农药的分散体系研究

低场核磁法用于农药的分散体系研究

农药的分散体系

农药的分散体系主要评价指标为分散度,分散度即指所施用的农药被分散的程度,它是衡量农药制剂质量或施用时喷洒质量的指标之一。分散度通常用分散直径的大小表示。农药的分散度越大,粒子越小;分散度越小,粒子越大。在一般情况下,农药的分散度越大,在使用时其覆盖面积就越大,标志着药剂与病虫害接触的机会也就越大,它关系到农药的毒理学性能是否能得到充分发挥。

农药剂型和制剂的研究开发,当然与农药分散度有着密切关系,优良的农药品种、适用的农药剂型、适宜的施药机械都和农药的分散度相关。提高农药分散度一般可采用两种手段:一是加工手段。如将固体药剂粉碎,粉碎得越细,分散度也就越大。如最初使用的粉剂农药,它是由农药原药、助剂和填料混合均匀形成,具有使用方便、撒布效率高、成本低的优点,但是这种剂型使用时易飘移,分散度小,形成粉尘污染,危及人畜健康和环境安全,故产量大减,而被其他分散度相对较好的剂型农药所代替。

农药的分散度可以保证足够比例的有效成分均匀地分散在悬乳液中。农药的分散度是检验产品的关键,理想体系要求有效物无限悬浮。实际上要求1~2h分散体稳定,24h后能良好地再分散。已经证明,好的分散体(初分散)再分散性较差。所以只好牺牲初分散以获得好的再分散。

提高农药的分散体系分散度的好处

农药的分散体系分散度提高,总表面积增大后,可以提高靶面覆盖率 。农药施用后沉积在生物体表面上所能覆盖的面积与生物体表面总面积之比称为农药对靶面覆盖率。在一定用药量下,药剂的分散度越高,所形成的覆盖率就越高。

 

农药的分散体系分散度低场核磁分析评价

低场核磁分析技术可用于农药的分散体系分散度的评价,可快速检测悬浮体系中颗粒的分散性、团聚、絮凝过程,为水分散粒剂农药研发和质控提供数据参考。

低场核磁法用于农药的分散体系研究基本原理:

颗粒分散体中溶剂的弛豫速率与可用颗粒表面积成线性比例。与游离聚合物相关的溶剂或聚合物环和尾部内的溶剂在弛豫速率方面没有显著变化,因为它们仍然具有很高的流动性。当聚合物在颗粒表面形成吸附层时,由于水分子在近表面区域的比例和/或停留时间增加,总的弛豫速率增强。通过低场核磁技术的弛豫差异,即可低场核磁定量评价颗粒分散性。

2022-10-28 15:10:42 164 0
低场核磁技术用于橡胶抗老化研究

低场核磁技术用于橡胶抗老化研究

橡胶老化现象

由于橡胶制品的使用越来越频繁,橡胶产品在多数人的印象中是性能优异且各方面使用体验都很好,许多老客户也慢慢感觉到橡胶制品老化的现象,橡胶制品为什么会出现老化现象。

橡胶产品为什么会出现老化?

橡胶树脂的粘合性比许多橡胶都要高,但橡胶同其它橡胶一样,也会发生老化现象,由于内部分子链断裂,使橡胶的性能发生了很大的变化。对于橡塑制品来说,橡胶产品危害zui大的就是紫外线,紫外线会直接导致橡胶分子链的断裂,这是因为橡胶制品可吸收光能使橡胶内产生自由分子。

 

橡胶产品老化的原因主要有以下三点:

1. 经常有高温或高温环境。高温度会加速橡胶材料的氧化环境,从而导致老化。

2. 化学因素。归根结底,橡胶材料是一种化学物质,有些化学因素会加速其老化。

3. 臭氧。硅材料很怕臭氧,会使橡胶制品的性能迅速下降,老化得很快。

橡胶老化的试验方法:

橡胶老化是橡胶性能受损的主要原因之一。由于产品的配方和使用条件各异,老化历程快慢不一,所以,需要通过检测技术对橡胶样品进行测试,以评定橡胶老化的程度及其对性能的影响。低场核磁技术可用于橡胶老化检测。

低场核磁技术研究橡胶抗老化基本原理:

纽迈VTMR系列低场核磁共振分析仪

低场核磁共振技术是通过测定恒定磁场强度下样品中1H的弛豫时间,从而获得分子结构动态信息的方法。其基本原理是通过施加射频脉冲给予处于恒定磁场中的样品,使氢质子发生共振,质子所吸收的射频波能量以非辐射的方式释放后返回到基态,此过程被称为弛豫过程。弛豫又可分为横向弛豫和纵向弛豫,样品内部氢质子所处物理化学环境及存在状态决定了弛豫时间的长短。从物理机制上,核磁弛豫过程是自旋氢原子核与环境之间通过相互作用进行能量交换的过程。核磁共振是自旋不为零的原子在静磁场中被磁化后,与特定射频场产生共振吸收现象,吸收射频脉冲能量后自旋核与周围物质相互作用,释放能量,并恢复初始状态过程。

橡胶老化是交联体系发生变化的综合过程,核磁共振的弛豫机制对这种变化具有高敏感性,其主要表现为横向弛豫时间T2随反应时间延长的规律性变化。因此通过研究老化过程中橡胶样品的弛豫时间变化规律及其与老化性能的关系,就可以间接评估橡胶老化的特性。

2023-02-22 15:26:37 149 0
低场核磁法研究辐照交联度

低场核磁法研究辐照交联度

交联,是指利用特定的技术手段,在聚合物高分子长链之间形成化学键或者围观镪力物理结合点,从而使聚合物的物理性能、化学性能获得改善并有可能引入新的性能。

这里的“辐照交联度”专指各种核辐射如电子束、γ射线、中子束、粒子束等等,光辐射如紫外光等的应用则属于光化学领域,也可利用紫外光引发交联反应,称为光交联。

聚合物的分子链与链之间缺乏紧密的结合力,使得整体材料在经受外力及环境温度影响时产生变形或发生破坏,限制了其应用。根据实际应用范围和目的,有必要对聚合物进行改性,交联被认为是行之有效的方法。

聚合物交联度一直都是行业难题,传统的溶胀法测试精度低、受人为主观因素较大。在核磁法中,聚合物弛豫衰减曲线随样品内部组分状态的改变而改变,通过核磁弛豫技术可快速无损获得交联链与非交联链信号以得到交联度。

高分子聚合物内的溶剂部分流动性蕞强,衰减最慢;非交联段具有一定的分子运动特性,衰减相对较慢;而交联段所受束缚程度大,分子运动特性小,衰减较快。相比传统的SE或CPMG序列采集的不同,采用MSE-CPMG新序列采集时,通过施加组合脉冲使得核磁共振信号在死时间范围内来回反转从而尽量维持原始的核磁共振信号强度,以此实现更加短的弛豫信息采集,交联度的测试准确性进一步提高。

低场核磁法研究辐照交联度的原理:

低场核磁共振分析技术是利用脉冲激发材料样品中的氢质子发生共振,停止脉冲后,氢质子发生弛豫。样品中处于不同状态的氢质子的弛豫时间是不同的。对其弛豫信号进行检测分析研究可以直接或者间接检测材料的某些特性。低场核磁法是利用低场核磁共振分析技术,通过对烃链上的H分子运动进行评价,根据弛豫分析模型解析出样品的交联度。测试过程无需化学品、对样品无损,测试速度快,一般3分钟以内即可完成测试。

低场核磁共振分析仪的组成

核磁交联密度仪通常由以下几部分组成:

1)控制单元(控制核心,人机交互的界面);

2)磁体单元(产生射频激励并收集信号的部分);

3)样品腔(测样部分)。

除以上部分,还有温度控制、电源模块等;

2022-06-24 13:57:31 158 0
低场核磁法研究橡胶交联度

低场核磁法研究橡胶交联度

交联度又称交联指数,通常用交联密度或两个相邻交联点之间的数均分子量或每立方厘米交联点的摩尔数来表示。交联度小的橡胶弹性较好,交联度大的橡胶弹性差,交联度再增加,机械强度和硬度都将增加,蕞终失去弹性。

橡胶交联度一直都是行业难题,传统的溶胀法测试精度低、受人为主观因素较大。在核磁法中,聚合物弛豫衰减曲线随样品内部组分状态的改变而改变,通过核磁弛豫技术可快速无损获得交联链与非交联链信号以得到交联度。

高分子聚合物内的溶剂部分流动性蕞强,衰减最慢;非交联段具有一定的分子运动特性,衰减相对较慢;而交联段所受束缚程度大,分子运动特性小,衰减较快。相比传统的SE或CPMG序列采集的不同,采用MSE-CPMG新序列采集时,通过施加组合脉冲使得核磁共振信号在死时间范围内来回反转从而尽量维持原始的核磁共振信号强度,以此实现更加短的弛豫信息采集,交联度的测试准确性进一步提高。

低场核磁法研究橡胶交联度的原理:

低场核磁共振分析技术是利用脉冲激发材料样品中的氢质子发生共振,停止脉冲后,氢质子发生弛豫。样品中处于不同状态的氢质子的弛豫时间是不同的。对其弛豫信号进行检测分析研究可以直接或者间接检测材料的某些特性。低场核磁法是利用低场核磁共振分析技术,通过对烃链上的H分子运动进行评价,根据弛豫分析模型解析出样品的交联度。测试过程无需化学品、对样品无损,测试速度快,一般3分钟以内即可完成测试。

低场核磁共振分析仪的组成

核磁交联密度仪通常由以下几部分组成:

1)控制单元(控制核心,人机交互的界面);

2)磁体单元(产生射频激励并收集信号的部分);

3)样品腔(测样部分)。

除以上部分,还有温度控制、电源模块等;

2022-07-13 17:29:56 118 0
低场核磁法研究胶水交联度

低场核磁法研究胶水交联度

交联,是指利用特定的技术手段,在聚合物高分子长链之间形成化学键或者围观弓虽力物理结合点,从而使聚合物的物理性能、化学性能获得改善并有可能引入新的性能。

胶水交联度

溶液型胶强剂固化过程的实质是随着溶剂的挥发,溶液浓度不断增大,蕞后达到一定的强度。溶液胶的固化速度决定于溶剂的挥发速度,还受环境温度、湿度、被粘物的致密程度与含水量、接触面大小等因素的影响。配制溶液胶时应选样特定溶剂改组成混合溶剂以调节固化速度。选用易持发的溶剂,易影响结晶料的结晶速度与程度,甚至造成胶层结皮而降低粘接强度,此外快速挥发造成的粘接处降温凝水对粘接强度也是不利的。选用的溶剂挥发太慢,固化时间长,效率低,还可能造成胶层中溶剂滞留,对粘接不利。

胶水交联度评价一直都是行业难题,传统的溶胀法测试精度低、受人为主观因素较大。在核磁法中,聚合物弛豫衰减曲线随样品内部组分状态的改变而改变,通过核磁弛豫技术可快速无损获得交联链与非交联链信号以得到交联度。

高分子聚合物内的溶剂部分流动性蕞强,衰减最慢;非交联段具有一定的分子运动特性,衰减相对较慢;而交联段所受束缚程度大,分子运动特性小,衰减较快。相比传统的SE或CPMG序列采集的不同,采用MSE-CPMG新序列采集时,通过施加组合脉冲使得核磁共振信号在死时间范围内来回反转从而尽量维持原始的核磁共振信号强度,以此实现更加短的弛豫信息采集,交联度的测试准确性进一步提高。

低场核磁法研究胶水交联度的原理:

低场核磁共振分析技术是利用脉冲激发材料样品中的氢质子发生共振,停止脉冲后,氢质子发生弛豫。样品中处于不同状态的氢质子的弛豫时间是不同的。对其弛豫信号进行检测分析研究可以直接或者间接检测材料的某些特性。低场核磁法是利用低场核磁共振分析技术,通过对烃链上的H分子运动进行评价,根据弛豫分析模型解析出样品的交联度。测试过程无需化学品、对样品无损,测试速度快,一般3分钟以内即可完成测试。

低场核磁共振分析仪的组成

核磁交联密度仪通常由以下几部分组成:

1)控制单元(控制核心,人机交互的界面);

2)磁体单元(产生射频激励并收集信号的部分);

3)样品腔(测样部分)。

除以上部分,还有温度控制、电源模块等;

2022-07-15 17:39:28 156 0
低场核磁法研究树脂交联度

低场核磁法研究树脂交联度

树脂的交联度,即树脂基体聚合时所用二乙烯苯的百分数,对树脂的性质有很大影响。通常,交联度高的树脂聚合得比较紧密,坚牢而耐用,密度较高,内部空隙较少,对离子的选择性较强;而交联度低的树脂孔隙较大,脱色能力较强,反应速度较快,但在工作时的膨胀性较大,机械强度稍低,比较脆而易碎。工业应用的离子树脂的交联度一般不低于4%;用于脱色的树脂的交联度一般不高于8%;单纯用于吸附无机离子的树脂,其交联度可较高。

树脂交联度一直都是行业难题,传统的溶胀法测试精度低、受人为主观因素较大。在核磁法中,聚合物弛豫衰减曲线随样品内部组分状态的改变而改变,通过核磁弛豫技术可快速无损获得交联链与非交联链信号以得到交联度。

高分子聚合物内的溶剂部分流动性蕞强,衰减最慢;非交联段具有一定的分子运动特性,衰减相对较慢;而交联段所受束缚程度大,分子运动特性小,衰减较快。相比传统的SE或CPMG序列采集的不同,采用MSE-CPMG新序列采集时,通过施加组合脉冲使得核磁共振信号在死时间范围内来回反转从而尽量维持原始的核磁共振信号强度,以此实现更加短的弛豫信息采集,交联度的测试准确性进一步提高。

低场核磁法研究树脂交联度的原理:

低场核磁共振分析技术是利用脉冲激发材料样品中的氢质子发生共振,停止脉冲后,氢质子发生弛豫。样品中处于不同状态的氢质子的弛豫时间是不同的。对其弛豫信号进行检测分析研究可以直接或者间接检测材料的某些特性。低场核磁法是利用低场核磁共振分析技术,通过对烃链上的H分子运动进行评价,根据弛豫分析模型解析出样品的交联度。测试过程无需化学品、对样品无损,测试速度快,一般3分钟以内即可完成测试。

低场核磁共振分析仪的组成

核磁交联密度仪通常由以下几部分组成:

1)控制单元(控制核心,人机交互的界面);

2)磁体单元(产生射频激励并收集信号的部分);

3)样品腔(测样部分)。

除以上部分,还有温度控制、电源模块等;

2022-07-15 17:40:11 166 0
低场核磁法用于gap固化与溶胀性研究

低场核磁法用于gap固化与溶胀性研究

溶胀是指溶剂分子扩散进入高分子内部,使其体积膨胀的现象。溶胀行为是高分子材料的一项重要参数,高分子材料的平衡溶胀率会影响到材料中物质的扩散系数,表面润湿性和机械强度等。很多研宄将溶胀特性作为一个设计参数来制备具有特殊应用的智能材料。

溶胀是高分子材料特有的现象,其原因在于溶剂分子与高分子尺寸相差悬殊,分子运动速度相差很大,溶剂分子扩散速度较快,而高分子向溶剂中的扩散缓慢。因此,高分子溶解时首先是溶剂分子渗透进入高分子材料内部,使其体积增大,即溶胀。随着溶剂分子的不断渗入,溶胀的高分子材料体积不断增大,大分子链段运动增强,再通过链段的协调运动而达到整个大分子链的运动,大分子逐渐进入溶液中,形成热力学稳定的均相体系,即溶解阶段,如下图所示。

 

溶胀有两种:

无限溶胀:线形聚合物溶于良好的溶剂中,能无限制吸收溶剂,直到溶解成均相溶液为止。所以溶解也可看成是聚合物无限溶胀的结果。例:天然橡胶在汽油中;PS在苯中。

有限溶胀:对于交联聚合物以及在不良溶剂中的线形聚合物来讲,溶胀只能进行到一定程度为止,以后无论与溶剂接触多久,吸入溶剂的量不再增加,而达到平衡,体系始终保持两相状态。

低场核磁法用于gap固化与溶胀性研究:

低场核磁共振设备主要是检测样品中的H质子。将样品放入磁场中之后,通过发射一定频率的射频脉冲,使H质子发生共振,H质子吸收射频脉冲能量。当射频脉冲结束之后,H质子会将所吸收的射频能量释放出来,通过的线圈就可以检测到H质子释放能量的过程,这也就是核磁共振信号。对于性质不同的样品,其能量释放的快慢是不同的,通过这些信号差别就可以寻找规律,研究样品内部性质。

低场核磁共振(LF-NMR)在研究基于水迁移率的聚合物网络的水传输和微观结构方面具有巨大潜力。与高分辨率核磁共振不同,低场核磁共振(LF-NMR)主要用于通过测量弛豫时间来阐明反映结构异质性和相互作用的分子迁移率。研究表明,低场核磁共振(LF-NMR)是一种快速、无创、无损的测定水组分分布的方法。

纽迈PQ001系列低场核磁共振分析仪

2023-01-29 21:00:51 109 0

5月突出贡献榜

推荐主页

最新话题