转载 | 高温高压下,Palas®气溶胶粒径谱仪如何助力生物燃料研究
-
在生物燃料研究领域,气体净化一直是一个重要课题。在研究过程中通常需要对燃烧废料产生的原料气体进行净化并测试其净化效果,而这些气体往往处于高温高压条件,为气体的测量与分离带来重大挑战。
Palas® Promo® 3000HP气溶胶粒径谱仪可在高温高压环境下进行粒径表征,提供接近实际状态的气溶胶粒径分布数据。来自德国卡尔斯鲁厄的课题研究中心在其生物燃料项目中选择了Palas® Promo® 3000HP气溶胶粒径谱仪,帮助该生物燃料研究项目获得可靠数据。
卡尔斯鲁厄研究中心
项目面临的挑战
“在废料气化之后,我们必须对用于燃料合成物的原料气体进行净化处理。”来自卡尔斯鲁厄课题研究中心的罗伯特·迈博士说道。该项目从事生物燃料研究,从秸秆和废木材中提取燃料,整个过程中对原始燃料气体中杂质(烟尘颗粒,硫、氯化氢等)的分析和处理是燃料合成的关键环节。而由于催化剂的易燃性,保护其避免爆炸也是为研究的安全保驾护航。
罗伯特·迈( Dipl.-Ing. Robert Mai)在生物燃料项目的试验工厂
Promo® 3000HP可以在温度高达250 ℃或高压10 bar的条件下为该气体净化流程提供相关颗粒物浓度和颗粒物分布的测量。通常情况下废料燃烧生成燃料原始气体的条件为600 ℃和80 bar,完整实验的发生环境也至少达到200 ℃,从而避免气体的冷凝。但如此条件下无法进行气体测量,因此需要分离出冷却到200 ℃的二次流,使其在没有压力的情况下通向空气传感器。
独立的外置传感器通过光纤与主机通讯,适用于易燃易爆气溶胶的监测,避免了电缆与易燃气体的接触。在研究过程中,Promo® 3000HP起到了保护易燃催化剂的作用,确保了实验环境的安全。为观测气体净化效果,需要通过净化前后的数据对比来帮助查验过滤效果。在Promo® 3000HP中,原始气体和净化后的气体被两个独立的传感器中检测,使得快速的过滤层测试成为可能。而用于测量原始气体和净化气体的两个传感器可以通过光纤连接:当传感器2070 H被用于高浓度原始气体检测,传感器2300 H被用于浓度低于10 mg/m3的净化后的气体检测。
值得信赖的Palas®仪器
认识到Palas®仪器了在实验室的精彩表现,我们还可以在基尔大学Christian Albrecht制药研究所看到这些仪器的实际应用。Palas® Promo®系列是一种白光 气溶胶测量系统,由于采用了数字化的单独信号处理,可以对单个粒子进行高分辨率的时间分析。久经考验的T型结构和模块化设计的优势,也使得welas®系统传感器可以利用灵活的新型散射光谱从而拥有高分辨率,确保了测量结果的高度可靠性。
Palas®设备和仪器可为不同的监测环境提供可靠的数据,未来也将继续为科研与实际测量带来令您放心的服务。
Promo® 3000HP气溶胶粒径谱仪
Palas® Promo® 3000HP气溶胶粒径谱仪除了耐高温高压与监测易燃易爆气溶胶等可靠功能,还采用了集成电子处理器技术,可以单独进行信号分析与重合分析,并可以在浓度高达106 p/cm3的条件下可信赖地测量颗粒物浓度与颗粒物大小。同时Promo® 3000HP还提供双探头测量方案,可任意配置用于高浓度(最 高可达1x106 个/cm3)或低浓度(最 低1 个/cm3)的探头,满足不同浓度区域的测量需求。与此同时,该设备还可通过各种接口(USB, Ethernet (LAN), Wi-Fi, RS-232/485)将设备连接到过程控制系统中,实现系统集成。
产品优势
测量范围为 0.2 至 100 μm(在一台设备中可以选择 4 个测量范围)
在一台设备中多达有四个测量范围
0.2 µm – 10 µm
0.3 µm – 17 µm
0.6 µm – 40 µm2 µm – 100 µm (传感器 welas 2300 和 2500附加范围)
每个测量范围多达 128 个尺寸通道
浓度范围 1 颗粒/立方厘米至 106 颗粒/立方厘米
不同折射率的校准曲线
从 0.2 μm开始具有很高且可重现的计数效率
光纤技术
大触摸屏操作简单
客户可以独立进行校准、清洁和更换灯泡
通过 RS 232 或以太网进行外部控制
带有PDAnalyze 分析软件
可选:软件PDControl 可作为welas digital 工作软件
低维护
功能可靠
减少您的运营费用
应用领域
设备排放监控
控制研磨和分类过程
监控食品、制药和化工行业的生产过程
测试完整的过滤器、惯性和湿式分离器或静电除尘器
全部评论(0条)
热门问答
- 转载 | 高温高压下,Palas®气溶胶粒径谱仪如何助力生物燃料研究
在生物燃料研究领域,气体净化一直是一个重要课题。在研究过程中通常需要对燃烧废料产生的原料气体进行净化并测试其净化效果,而这些气体往往处于高温高压条件,为气体的测量与分离带来重大挑战。
Palas® Promo® 3000HP气溶胶粒径谱仪可在高温高压环境下进行粒径表征,提供接近实际状态的气溶胶粒径分布数据。来自德国卡尔斯鲁厄的课题研究中心在其生物燃料项目中选择了Palas® Promo® 3000HP气溶胶粒径谱仪,帮助该生物燃料研究项目获得可靠数据。
卡尔斯鲁厄研究中心
项目面临的挑战
“在废料气化之后,我们必须对用于燃料合成物的原料气体进行净化处理。”来自卡尔斯鲁厄课题研究中心的罗伯特·迈博士说道。该项目从事生物燃料研究,从秸秆和废木材中提取燃料,整个过程中对原始燃料气体中杂质(烟尘颗粒,硫、氯化氢等)的分析和处理是燃料合成的关键环节。而由于催化剂的易燃性,保护其避免爆炸也是为研究的安全保驾护航。
罗伯特·迈( Dipl.-Ing. Robert Mai)在生物燃料项目的试验工厂
Promo® 3000HP可以在温度高达250 ℃或高压10 bar的条件下为该气体净化流程提供相关颗粒物浓度和颗粒物分布的测量。通常情况下废料燃烧生成燃料原始气体的条件为600 ℃和80 bar,完整实验的发生环境也至少达到200 ℃,从而避免气体的冷凝。但如此条件下无法进行气体测量,因此需要分离出冷却到200 ℃的二次流,使其在没有压力的情况下通向空气传感器。
独立的外置传感器通过光纤与主机通讯,适用于易燃易爆气溶胶的监测,避免了电缆与易燃气体的接触。在研究过程中,Promo® 3000HP起到了保护易燃催化剂的作用,确保了实验环境的安全。为观测气体净化效果,需要通过净化前后的数据对比来帮助查验过滤效果。在Promo® 3000HP中,原始气体和净化后的气体被两个独立的传感器中检测,使得快速的过滤层测试成为可能。而用于测量原始气体和净化气体的两个传感器可以通过光纤连接:当传感器2070 H被用于高浓度原始气体检测,传感器2300 H被用于浓度低于10 mg/m3的净化后的气体检测。
值得信赖的Palas®仪器
认识到Palas®仪器了在实验室的精彩表现,我们还可以在基尔大学Christian Albrecht制药研究所看到这些仪器的实际应用。Palas® Promo®系列是一种白光 气溶胶测量系统,由于采用了数字化的单独信号处理,可以对单个粒子进行高分辨率的时间分析。久经考验的T型结构和模块化设计的优势,也使得welas®系统传感器可以利用灵活的新型散射光谱从而拥有高分辨率,确保了测量结果的高度可靠性。
Palas®设备和仪器可为不同的监测环境提供可靠的数据,未来也将继续为科研与实际测量带来令您放心的服务。
Promo® 3000HP气溶胶粒径谱仪
Palas® Promo® 3000HP气溶胶粒径谱仪除了耐高温高压与监测易燃易爆气溶胶等可靠功能,还采用了集成电子处理器技术,可以单独进行信号分析与重合分析,并可以在浓度高达106 p/cm3的条件下可信赖地测量颗粒物浓度与颗粒物大小。同时Promo® 3000HP还提供双探头测量方案,可任意配置用于高浓度(最 高可达1x106 个/cm3)或低浓度(最 低1 个/cm3)的探头,满足不同浓度区域的测量需求。与此同时,该设备还可通过各种接口(USB, Ethernet (LAN), Wi-Fi, RS-232/485)将设备连接到过程控制系统中,实现系统集成。
产品优势
测量范围为 0.2 至 100 μm(在一台设备中可以选择 4 个测量范围)
在一台设备中多达有四个测量范围
0.2 µm – 10 µm
0.3 µm – 17 µm
0.6 µm – 40 µm2 µm – 100 µm (传感器 welas 2300 和 2500附加范围)
每个测量范围多达 128 个尺寸通道
浓度范围 1 颗粒/立方厘米至 106 颗粒/立方厘米
不同折射率的校准曲线
从 0.2 μm开始具有很高且可重现的计数效率
光纤技术
大触摸屏操作简单
客户可以独立进行校准、清洁和更换灯泡
通过 RS 232 或以太网进行外部控制
带有PDAnalyze 分析软件
可选:软件PDControl 可作为welas digital 工作软件
低维护
功能可靠
减少您的运营费用
应用领域
设备排放监控
控制研磨和分类过程
监控食品、制药和化工行业的生产过程
测试完整的过滤器、惯性和湿式分离器或静电除尘器
- 气溶胶粒径分析仪和气溶胶径谱仪的区别
- Palas®协助南极气象变化研究
一直以来,南极洲不仅是冒险者的目的地,也是众多科研人员关注的地方。远离了城市的喧嚣,这个地区一般没有严重的大气污染,适合气象变化的研究。科研机构对于气溶胶测量仪有着严格的要求。凭借着Palas®气溶胶测量经验,Palas® 研究人员Ann-Kathrin Goßmann女士随着Palas® Cloud Droplet Analyzer云滴分析仪一路向南,现已到达南极,助力芬兰气象研究所(FMI)进行长期的气象研究,共同守护地球生态家园。
芬兰气象研究所(FMI)是欧洲主要的气象研究机构, 对欧洲以及世界气象研究有着深入的探索。鉴于南极洲的空气污染较少,因此气象研究所可以在这里研究气候变化,气候模型的创建以及回答有关大气变暖和变冷之间相互作用的相关主题。
南极洲
Palas®守护南极气象变化研究
Palas® Cloud Droplet Analyzer云滴分析仪已经在2022年8月就开始了漫长的旅程,几周前,Palas® Cloud Droplet Analyzer云滴分析仪终于抵达南极洲。Palas® 研究人员Ann-Kathrin Goßmann女士也在2022年12月17日到达南极洲Marambio(阿根廷南极科考站所在地区),协助安装Palas® Cloud Droplet Analyzer云滴分析仪并支持芬兰气象研究所的测量活动。
Palas® 研究人员在南极科考站
Palas®为此行做足了准备,在出发前成立组会用于讨论研究各项流程,对即将用到的Palas®仪器也做了细致的检查。Palas® Cloud Droplet Analyzer云滴分析仪测量云气溶胶,如南极地区大气中的液滴和冰晶的尺寸分布和数量浓度,能够帮助芬兰气象研究所分析大气中液滴和气溶胶的组成,研究其浓度和大小。除了Palas® Cloud Droplet Analyzer云滴分析仪外,Palas®还带来了ENVI-CPC纳米颗粒计数器,可以辅助Palas® Cloud Droplet Analyzer云滴分析仪,实现多样化的颗粒物粒径测量范围。
Palas® Cloud Droplet Analyzer云滴分析仪在气象研究中是不可或缺的观测仪器,其应用范围灵活,可应用于大气成分观测、云的形成、冰成核过程、气候变化研究等。Palas® Cloud Droplet Analyzer云滴分析仪在真实变化的大气条件下,通过高分辨率测量粒径分布和浓度,来了解现实状态中的云形成过程,并在低浓度的条件下区分水和冰颗粒。Palas® Cloud Droplet Analyzer云滴分析仪将持续助力南极洲科考工作,共同守护生态环境。
Palas® Cloud Droplet Analyzer云滴分析仪
Palas® Cloud Droplet Analyzer云滴分析仪是一款高分辨率光学气溶胶光谱仪,专门用于测量云气溶胶(如液滴和冰晶)的尺寸分布和数量浓度。基于对单个粒子和高分辨率成分光散射(90°)的测量原理,可以区分液滴和冰晶。另外,Palas® Cloud Droplet Analyzer云滴分析仪可以报告云水含量以及平均液滴直径。
应用领域
原位云监控
环境研究
气候研究
云形成
冰核事件
- 什么是粒径谱
- 宽范围粒径谱仪可适用于哪些领域,有谁知道?
- 高温高压下二氧化碳和…… 和成尿素下化学方程式是____________
- 激光粒径仪测的粒径与温度有关吗
- 【求助】激光粒径仪所测粒径与SEM的粒径相差甚远是什么原因
- 氧化镁粒径如何测定
- 预真空高温高压灭菌器消毒效果如何?
- 预真空高温高压灭菌器消毒效果如何?三次预真空是什么意思,大约这种设备多少钱?
- 高通量单细胞力谱测定!多功能单细胞显微操作技术助力单细胞力学研究
单程细胞具有复杂生物学性质,它们通过细胞外基质ECM形成紧密的细胞与基质细胞与细胞连接,诸如上皮细胞通过这种特殊的链接方式构成了屏障层保护人体免受外界损伤。因此细胞之间以及细胞基底的粘附力测定对于研究细胞粘附蛋白的机制有着重要意义。使用力学工具测量细胞间以及细胞与基质之间的粘附力始终不是一件容易的事情。首先,由于细胞与基质的作用力仅为nN级别,因此需要力学精度较高的设备才能够测量,而且在这其中较为适合的工具为原子力显微镜(AFM)。原子力显微镜能够提供纳米级别的操作精度并可测量从pN~nN范围的力谱。但是受制于AFM探针本身的限制,需要借助修饰手段才能够让细胞与探针固定到一起,这个过程十分繁琐,并且由于需要大量手工操作很难实现高通量的测量。而不同的细胞由于细胞异质性使得要想确定粘附力需要较多样本才能获得相对准确的值,无法实现高通量测量直接限制了原子力探针在细胞粘附力上的应用。
而多功能单细胞显微操作FluidFM技术的出现改变了这一现状,它使用特殊的中空探针能够轻松地通过负压抓取细胞,取得和AFM近似精度的数据,无需在探针上进行任何修饰,不会改变细胞表面的任何通路,从而能够得到接近细胞原生的数据。在实验结束后能够通过正压快速丢弃用过的细胞,具备很高的自动化,能够快速测量细胞粘附力。
使用FluidFM对细胞操作的基本流程
FluidFM在粘附力测量上具备显著优势。如图所示,FluidFM能够通过负压将细胞吸附到原子力探针的末端,通过高精度位移台的控制将细胞从基底上分离,并且同时记录FD曲线。通过FD曲线能够获得最大粘附力Fmax和粘附能量Emax。通过高度自动化的控制系统能够在短时间内测量大量细胞粘附力,评估细胞群体分布以及细胞间差异,并且可有效避免传统粘附力测量因准备时间过长而错过最佳测量时间导致的细胞粘附力改变,得到更为精准的结果。近期,Agoston等人使用多功能单细胞显微操作系统FluidFM实现了高通量细胞粘附力测量,对同种细胞不同区以及不同细胞之间的粘附力进行测量和比较。
作者首先对Vero和Hela细胞在不同状态下的粘附力进行了测量和比较,总共测量了214个细胞。通过比较明胶涂层上处于单个细胞、孤岛状细胞、致密连接细胞以及单层细胞上游离细胞之间的粘附力,能够明显观测到Vero细胞处于致密连接的细胞粘附力最大,大概在750 nN左右,随着细胞单细胞层的稀疏,细胞粘附力有所下降,而处于细胞层顶部的细胞粘附力最低仅为50 nN左右。这一点充分说明上皮细胞能够在细胞之间形成紧密的连接,而处于细胞层外的细胞则几乎没有粘附力。而对于HeLa这样的肿瘤细胞测量的结果却显示出了截然不同的结果,处于不同状态的细胞有着近似的粘附力,基本都在200 nN左右,这与处于单个游离上皮细胞的粘附力十分接近,表明HeLa细胞在不同环境下仍然具有较高迁徙能力。
使用FluidFM对不同区域细胞的FD曲线测定结果和对比
通过对这两种细胞的最大粘附力、最大粘附能量、最大拉伸距离和细胞接触面积进行统计分析可以发现,HeLa肿瘤细胞在粘附力和粘附能量上均有所降低,但是当HeLa细胞形成了单层后,两者区别不大。
对比Hela和Vero在不同生长状态下的最大粘附力、最大粘附能量、粘附拉伸距离和粘附面积。
再进一步对Vero与HeLa细胞最大粘附力与距离和接触面积进行对比,依然可以得到与单独比较粘附力相同的结果,并且最大能量与细胞接触面积的比值中也存在着类似的结果。由此可见肿瘤细胞通过降低自身粘附力从而获得了更好的迁移能力。
对不同状态Vero和A549之间的粘附力/粘附距离、粘附力/粘附面积、粘附能量/粘附面积
总结
细胞粘附力测定在细胞生命科学研究中起着至关重要的作用,然而传统手段中有着各种各样的局限性,主要原因是缺乏一种有效抓取细胞并进行力学测定的手段。现如今FluidFM技术在细胞粘附力测定中的应用,使得研究者们有了一种能够有效、低损的方式抓取细胞,配合原子力显微镜精确测量的特性,真正意义上做到精准、无损、快速的测量单细胞粘附力,帮助研究者寻找细胞粘附力与细胞生命发展、肿瘤细胞转移之间的关系。
【参考文献】
[1] A. Sancho, M. B. Taskin, L. Wistlich, P. Stahlhut, K. Wittmann, A. Rossi & J. Groll. Cell Adhesion Assessment Reveals a Higher Force per Contact Area on Fibrous Structures Compared to Flat Surfaces. ACS Biomater. Sci. Eng. 2022, 8, 2, 649–658.
[2] P.W. Doll, K. Doll, A. Winkel, R. Thelen, R. Ahrens, M. Stiesch & A.E. Guber. Influence of the Available Surface Area and Cell Elasticity on Bacterial Adhesion Forces on Highly Ordered Silicon Nanopillars. ACS Omega. 2022, 7, 21, 17620–17631.
[3] Sankaran, S. Jaatinen, L. Brinkmann, J. Zambelli, T. Vörös, J. Jonkheijm, P. Cell adhesion on dynamic supramolecular surfaces probed by fluid force microscopy-based single-cell force spectroscopy. ACS Nano 2017, 11, 3867–3874.
[4] Sancho, A. Vandersmissen, I. Craps, S. Luttun, A. Groll, J. A new strategy to measure intercellular adhesion forces in mature cell-cell contacts. Sci. Rep. 2017, 7, 46152.
[5] Ines, Lüchtefeld. Alice, Bartolozzi. Julián M. M. Oana, Dobre. Michele, Basso. Tomaso, Zambelli. Massimo, Vassalli. Elasticity spectra as a tool to investigate actin cortex mechanics. J Nanobiotechnol. 2020, 18, 147.
[6] Dehullu, J. Valotteau, C. Herman-Bausier, P. Garcia-Sherman, M. Mittelviefhaus, M. Vorholt, J. A. Lipke, P. N. Dufrene, Y. F. Fluidic force microscopy demonstrates that homophilic adhesion by Candida albicans Als proteins is mediated by amyloid bonds between cells. Nano Lett. 2019, 19, 3846–3853.
[7] Mittelviefhaus, M. Müller, D. B. Zambelli, T. Vorholt, J. A. A modular atomic force microscopy approach reveals a large range of hydrophobic adhesion forces among bacterial members of the leaf microbiota. ISME J. 2019, 13, 1878–1882.
[8] F. Weigl, C. Blum, A. Sancho & J. Groll. Correlative Analysis of Intra- versus Extracellular Cell Detachment Events vis the Alignment of Optical Imaging and Detachment Force Quantification. Adv. Mater. Technol. 2022, 2200195.
【相关产品】
多功能单细胞显微操作系统- FluidFM OMNIUM:https://www.yiqi.com/zt2203/product_386418.html
5月突出贡献榜
推荐主页
最新话题
-
- #DeepSeek如何看待仪器#
- 干体炉技术发展与应用研究
- 从-70℃到150℃:一台试验箱如何终结智能...从-70℃到150℃:一台试验箱如何终结智能调光膜失效风险?解决方案:SMC-210PF-FPC温湿度折弯试验箱的五大核心价值1. 多维度环境模拟,覆盖全生命周期测试需求超宽温域:支持-70℃至+150℃的极限温度模拟(可选配),复现材料在极寒、高温、冷热冲击下的性能表现;控湿:湿度范围20%~98%RH(精度±3%RH),模拟热带雨林、沙漠干燥等复杂工况,暴露材料吸湿膨胀、分层缺陷;动态折弯:0°~180°连续可调折弯角度,支持R1~R20弯曲半径设定,模拟实际装配中的微小应力,提前预警裂纹、断裂风险。
参与评论
登录后参与评论