仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

复合相变材料与液冷耦合的动力电池热管理系统的研究

上海和晟仪器科技有限公司 2023-07-05 10:58:55 100  浏览
  • HS-TGA-103热重分析仪主要由加热系统、称重系统、温度控制系统和数据处理系统组成。在测试过程中,样品被放置在加热系统内,通过温度控制系统进行升温。同时,称重系统监测样品的质量变化,并将数据传输至数据处理系统进行分析。通过测量样品质量随温度的变化,热重分析仪能够揭示材料的热稳定性和动力学行为等信息。

    复合相变材料与液冷耦合的动力电池热管理系统的研究【南昌大学 刘自强】


    复合相变材料与液冷耦合的动力电池热管理系统的研究
    上海和晟 HS-TGA-103 热重分析仪


参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

复合相变材料与液冷耦合的动力电池热管理系统的研究

HS-TGA-103热重分析仪主要由加热系统、称重系统、温度控制系统和数据处理系统组成。在测试过程中,样品被放置在加热系统内,通过温度控制系统进行升温。同时,称重系统监测样品的质量变化,并将数据传输至数据处理系统进行分析。通过测量样品质量随温度的变化,热重分析仪能够揭示材料的热稳定性和动力学行为等信息。

复合相变材料与液冷耦合的动力电池热管理系统的研究【南昌大学 刘自强】


复合相变材料与液冷耦合的动力电池热管理系统的研究
上海和晟 HS-TGA-103 热重分析仪


2023-07-05 10:58:55 100 0
热点应用丨耦合热冷台附件实现上转换发光材料温度传感的研究

前言

许多发光材料的发光特性随温度、压力或化学物质的存在而变化。这种特性在发光传感器的开发中得到了长期的应用。除了化学传感外,发光测温法也是最常用的传感方法之一。与其他方法不同,它不需要宏观的探针与探测区域进行物理接触。这是发光测温法无可比拟的优势。例如,可以功能化的发光纳米颗粒进入生物靶,荧光显微镜可以准确探测不同区域的温度。这种纳米测温法在医学领域有很大的潜力,如:对温度高于平均值的癌细胞进行成像[1]。


发光测温可以根据强度、线宽、光致发光寿命或光谱位移的变化来进行。由于镧系离子的稳定性和窄光谱特性,很容易识别到这些变化,因此在温度传感的应用中经常使用镧系离子[2]。此外,镧系掺杂材料呈现上转换发光性质: 可被近红外(NIR)光激发,在光谱可见光区发射。近红外光谱激发减少了生物组织的自吸收和散射,因此远程激励变得更加容易。由于这一性质,越来越多的温度生物成像研究使用无机纳米掺杂镧离子制备上转换纳米颗粒 (UCNPs)[3]。



图1. NaY0.77Yb0.20Er0.03F4上转换发光机理的结构示意图,其中红色和绿色的线代表发射跃迁。灰色的线代表非辐射跃迁。


图1是上转换荧光粉NaY0.77Yb0.20Er0.03F4发光机理的示意图。至少需要两个980nm的光子去激发样品来产生可见区的发射。除了直接激发Er3+离子外,还存在从激发态Yb3+与Er3+激发态的能量转移,该材料在可见光光谱的蓝色、绿色和红色区域发光。取决于跃迁过程中Er3+能级的高低。上转换的测温法通常集中使用525nm和540nm两个波长的发射峰,分别对应2H11/2 →4I15/2和4S3/2 → 4I15/2能级跃迁。2H11/2和2H11/2两个能级在能量上紧密间隔,他们实际处于热平衡状态。因此,它们的粒子数比例可以用玻尔兹曼分布来表示:



式中,Ni是能级i上的粒子数,Δe是两个能级间的能量差,k是玻尔兹曼常数,C是简并常数。

基于此,525nm与540nm处荧光强度的比值RHS可用来推出2H11/2与4S3/2的比值,从而能够计算出样品的温度。爱丁堡(Edinburgh Instruments)荧光光谱仪FLS1000通过光纤耦合变温台能够完成该测试项目。此变温台不仅能够保证在FLS1000和显微镜下研究的为同一样品,并且没有任何中间样品转移步骤。本文通过FLS1000荧光光谱仪耦合变温台对上转换样品NaY0.77Yb0.20Er0.03F4进行不同温度下上转换发光的测试。


测试方法与样品

测试样品为NaY0.77Yb0.20Er0.03F4上转换发光粉末,购置于Sigma Aldrich。将样品放置于Linkam HFS350EV-PB4冷热台里的石英样品池中。通过光纤将冷热台与FLS1000样品仓相连接。使用稳态光源Xe2 980nm进行激发,激光能量要低,以防止样品变热。使用980nm的激光器往往会造成样品受激光照射而变热[4]。FLS1000配置:双单色器,标准检测器PMT-900。时间分辨的寿命测试使用脉冲氙灯(μF2)作为激发光源,采用MCS模式测试发光寿命。



测试结果与讨论

使用FLS1000的Fluoracle中温度mapping的测试功能,分别测试从-100℃到80℃每间隔20℃温度范围内,样品上转换发射的红光及绿光随温度的变化情况。结果如图2(上转化绿光)和3(上转换红光)所示。图2 中上转换绿光发射峰是由于Er3+的2H11/2 →4I15/2和4S3/2 → 4I15/2两个能级跃迁产生的。4S3/2 → 4I15/2和4F9/2 → 4I15/2对应发射峰的强度随着温度升高而降低。但是2H11/2 → 4I15/2对应的谱待变化的稍有不同:在273K以下,随着温度的增加其发光强度降低。但当温度继续升高时,增长缓慢。



图2. NaY0.77Yb0.20Er0.03F4温度相关的发射图谱(绿光部分)。使用耦合Linkam冷热台的FLS1000光谱仪进行测试。测试条件:λex=980 nm, Δλex=10 nm, Δλem=10 nm, 步进step=0.10nm, 积分时间=1s/step。内插图为对应2H11/2→ 4I15/2跃迁的发射范围的放大图。



图3. NaY0.77Yb0.20Er0.03F4温度相关的发射图谱(红光部分)。使用耦合Linkam冷热台的FLS1000光谱仪进行测试。测试条件:λex=980nm, Δλex=10nm, Δλem=10nm, 步进step=0.10nm, 积分时间=1s/step。


图4. NaY0.77Yb0.20Er0.03F4温度相关的寿命三维谱图。使用耦合Linkam冷热台的FLS1000光谱仪进行测试。测试2H11/2→ 4I15/2对应的发射。测试条件:λex=980nm, Δλex=15nm, λem=541nm ,Δλem=10nm, 灯源频率=100Hz, 采集时间:每条衰退曲线采集5分钟。红色和蓝色曲线分别代表-100℃和40℃下的测试结果。随着温度的增加,非辐射弛豫过程降低了整体的上转换发光过程。有关温度的猝灭的动力学可以通过图4所示的温度相关的三维寿命谱图来进行研究,当温度增加时,该样品的发光寿命从640μs降低至530μs,有明显下降。回到图2和图3,从4S3/2 ,2H11/2 到4F9/2的弛豫过程相对增加了红色光的发射强度。这可以从图5(a)的温度Rrg函数看出。2H11/2 →4I15/2和4S3/2 → 4I15/2的比值,RHS是优异的温度指数参数(前言已介绍过),图5(b)是RHS随温度的变化图,图5(c)是相同数据的对数值。有趣的是,RHS并没有遵循玻尔兹曼曲线:在高温下,额外的弛豫过程发生并引发4S3/2 → 4I15/2跃迁的“缓慢增加”。这与之前的报告一致[5,6],证明了上转换的复杂动力学过程: 4H11/2到 4S3/2的非辐射过程在高温下变得更为重要,所以粒子数与RHS不相等。应该指出不同温度下的RHS 很大程度上取决于样品颗粒的大小[4,6]。为了说明上转换测温的概念,将曲线的低温区域拟合到图5 (c)所示的直线玻尔兹曼图中,可以得到荧光测温系统S的相对灵敏度。这是评价发光温度计系统的一个有用参数,计算方法如下:



图5的斜率为-ΔE/k, 在20℃的灵敏度为1.0%K-1。这一结果与类似的上转换测温系统是一致的。




图5.  上转换发射带强度的比值随温度变化的函数图:(a)红光和绿光的比值(b)2H11/2 →4I15/2和4S3/2 → 4I15/2的比值 (c) 图(b)的对数数据图。与玻尔兹曼图第 一部分的线性拟合如(c)所示。


结论

NaY0.77Yb0.20Er0.03F4温度相关上转换发光强度及寿命均可使用爱丁堡荧光光谱仪FLS1000 耦合Linkam冷热台进行测试。2H11/2 →4I15/2和4S3/2 → 4I15/2的比值可作为发光测温系统中的温度探针,其灵敏度为1.0%K-1。通过光纤耦合的Linkam冷热台附件能够使用户在发光测试和显微镜下灵活轻松切换,中途不需要样品转移步骤。



参考文献

[1] C. D. S. Brites, et al., Nanoscale 4, 4799-4829 (2012)
[2] M. D. Dramianin, Methods Appl. Fluoresc. 4, 042001 (2016)
[3] M. González-Béjar and J. Pérez-Prieto, Methods Appl. Fluoresc. 3, 042002 (2015)
[4] S. Zhou, et al., Optics Communications 291, 138-142 (2013)
[5] X. Bai, et al., J. Phys. Chem. C 111, 13611-13617 (2007)
[6] W. Yu, et al., Dalton Trans. 43, 6139-6147 (2014)




2022-12-27 15:23:37 312 0
解析示波器通道耦合与触发耦合的区别

相信大家对示波器有着一定的了解,都知道示波器中有两反设置,其实,在示波器当中也存在两种“两耦”设置,一种是通道耦合方式,另一种是触发耦合方式。

在电子电路中,将前级电路(或信号源)的输出信号送至后级电路(或负载)称为耦合。耦合的作用就是把某一电路的能量输送(或转换)到其他的电路中去。

先来说示波器通道的耦合方式,一般打开示波器的通道菜单,就可以看到示波器有三种通道耦合方式的设置,分别是直流耦合、交流耦合、地。我们给示波器输入一个频率为1KHz、幅值为100V、偏置为50V的正弦波信号(即该信号含有50V的直流分量)。

直流耦合也叫DC耦合,当选择此选项时,信号通过导线直接到前端放大器,被测信号含有的直流分量和交流分量都能通过,可用于查看低至0Hz且没有较大DC偏移的波形。此时信号显示如图所示:

交流耦合也叫AC耦合,当选择此选项时,信号通过电容耦合到前端放大器,被测信号的直流信号被阻隔,只允许交流分量通过,可用于查看具有较大直流偏移的波形。此时信号显示如图所示:

可以看到信号从零点(左侧黄色五边形里面写了个1的就是零点)往下移动了,上图中零点在波形下方位置,此时零点处于波形中间位置,因为信号的直流分量被过滤掉了。示波器的垂直档位是20V/div,信号下移了2格半,差不多正好就是50V。

当耦合方式为地时,代表内部输入接地,断开外部输入。此时信号显示如图所示:

接地耦合的作用是在不方便外部断开,或者外部干扰很大的时候,帮助我们准确寻找零点。

通道耦合,是用来控制信号到达示波器前端放大器的能量输送方式。触发耦合,就是用来控制信号到达示波器触发电路的能量输送方式。

常见的触发耦合有直流、交流、高频Y制、低频抑制、噪声抑制。

类似通道耦合,当选择直流耦合的时候,直流分量和交流分量都能通过触发。选择交流耦合的时候,示波器会滤除触发信号中的直流成分。高频抑制会抑制触发信号中高于50KHz的信号,低频抑制会抑制触发信号中低于50KHz的信号,而噪声抑制,是用低灵敏度的直流耦合来抑制触发信号中的高频噪声。我们来看下面这个信号:

此信号选用交流耦合,当触发电平超出波形的时候,信号依然可以被扫描同步。因为此信号是一个2V的方波,其中带有1V的直流分量。因此当触发耦合方式为交流时,信号实际应该下移1V,因此当触发电平-500mV时依然可以被触发。再来看下下面这个信号:

此信号选用低频抑制,虽然触发电平在信号范围内,但是由于触发信号中低于50KHz的信号被抑制,因此信号依然无法被扫描同步,出现信号不稳定的现象。

通道耦合与触发耦合虽然都是耦合但有本质的区别,它们只是并行的两个通道信号的耦合,两个通道的信号不会相互影响的。如需了解更多,欢迎访问安泰测试网www.agitek.com.cn。


2022-02-08 14:54:53 244 0
锂离子电池的电化学热耦合模型是什么意思
 
2017-10-29 21:49:40 396 1
运输管理与优化系统

模拟核心为公路运输,主要角色包括发货人、承运人、收货人以及物流运输公司之间的物流。对信息流的业务流程,发货人填单,承运人受理、办理托运、车辆调度协调,货物在途监控、收货人签收、付款结算、统计分析、经验决策等运输过程进行模拟。目的是使操作者培养运输优化与管理的思维,争取实现运输成本最小化、利益

大化、响应时间最短化、资金周转快速化



2023-06-14 10:09:49 66 0
扫描电镜助力复合维生素片的研究

近年来,随着智能移动手机的普遍应用,手机和电脑与人的关系更加紧密。无论是在地铁上、还是在饭桌上、低头族仿佛成了大多数人的诟病。而长期的低头工作,会导致颈椎疼痛难忍、背部不适、甚至还会出现头晕力乏等现象。

面对这些问题、很多人会选择用维生素片等保健药品来改善健康状态。那么,一款药片是否真的含有我们所需的各种营养成分,以及药片在微观下的分布如何?通过扫描电镜即可一探究竟。


我们选取了一款市面上常见的复合维生素片,其抛开表面光镜照片如上图所示。通过光镜图像,我们大致了解到该药片包含多种成分,且颗粒大小不一,最外层存在一层包衣用作保护药片。但当我们想进一步放大观察,或者探究各个位置的元素分布情况时,该图像显然无法满足我们的要求。


和光镜不同,扫描电镜作为观察材料微观结构的利器,具备高分辨、大景深,且能获得元素成分信息的优势,而被运用在各个行业。近期,一款来自赛默飞世尔科技公司的扫描电子显微镜(原FEI)Axia ChemiSEM因其独特的成像能力而广受关注。与传统钨灯丝电镜不同,Axia的诞生,标志着扫描电镜的成像,从单一的形貌灰度图像,飞跃至形貌与元素分布并举的多维度彩色成像。毫不夸张地说,Axia这种创新的工作模式为扫描电镜的材料分析创造了一种新思路,同时也树立了下一代扫描电镜发展的方向和标准。



Axia ChemiSEM实物图


我们使用Axia ChemiSEM扫描电镜任意选取该维生素片的某一区域进行放大,通过CBS背散射探测器获得表面至少分布四种不同成分。为了进一步确定元素组成,采用Axia ChemiSEM一键实时能谱功能,在原图的基础上快速获得了成分分布图,如下图所示。



一键点击得能谱结果,无需切换软件



维生素片表面BSE像



维生素片表面实时能谱像


通过对比维生素片产品信息表,再结合实时能谱分布图像,我们找到了维生素片中主要成分的分布情况。比如:钙(来源于柠檬酸钙)、镁(来源于重氧化镁)、钾(来源于硫酸钾)、铁(来源于富马酸亚铁)、锰(来源于锰氨基酸螯合物)等等。进一步分析,我们可以确定硫酸钾和氧化镁的位置,从而获得其尺寸大小及形态分布,这对于我们调控生产工艺至关重要。同时,元素的定量结果如下表所示。



利用Axia ChemiSEM实时能谱,快速获得了维生素药片表面各种成分的分布情况,以及在控制药片表面荷电的条件下,采用Axia低真空模式,无需手动安装压差光阑,软件快速切换真空模式,保证了药片的正常成像以及能谱分析。

2022-12-08 10:30:14 145 0
实验室管理系统lims的设计与实现

实验室信息管理系统软件(LIMS)是款实验室中经常使用的信息管理工具,以实验室为中心,将实验室的人(人员)、机(仪器设备)、料(标物标液、试剂耗材)、法(标准方法)、环(内外部环境)、测(检验过程)等因素有机结合,青软青之自主研发的实验室信息管理系统King's LIMS以业务流程作为切入点,以实验样品为主体驱动、以检测过程管理为中心环节、以认证认可规范为质量保证,以检测报告为核心,达到实验室业务的数字化、标准化、信息化管理,逐步实现无纸化办公管理,提高中心实验室整体工作效率、降低运行成本。


2022-02-11 17:52:03 205 0
智能实验室信息化系统的建设与管理

智能实验室信息化系统LIMS针对实验室的整体环境而设计,是实现实验室人、机、料、法、环全面管理的信息系统,承载着一套完整的检测、检验综合管理和产品质量管理体系。

实验室信息化系统核心内容包括检验管理、资源管理(人机料法环)、质量管理、数据统计分析和系统管理等。

检验业务流程管理实现从收样登记→合同评审→样品条形码管理→样品流转→任务分配(人、项目、检测标准、判断依据和指标值)→检验数据→数据复核→结果评价→报告编制→审核→签发→打印→发放及归档,全过程信息化管理。

实验室信息管理系统为实现分析数据网上调度、分析数据自动采集、快速分布、信息共享、分析报告无纸化、质量保证体系顺利实施、成本严格控制、人员量化考核、实验室管理水平整体提高等各方面提供技术支持,是连接实验室、生产车间、质管部门及客户的信息平台,能为实验室工作人员提供智能化,专业化应用服务,简易便捷,功能灵活,有效提高实验室工作效率及管理水平,青软青之为各类行业的实验室信息化管理提供解决方案并实施,是可信赖的实验室行业信息化运营服务商,能帮助实验室数智化转型,优化实验室运维结构,提升实验室管理监控效率。

 


2022-10-14 16:13:33 294 0
高压下几种有机分子晶体的相变和光学性质的研究论文
 
2018-07-09 21:24:19 436 1
求助,相变材料是否有导热系数和有效导热系数的区别
 
2018-12-11 16:24:49 291 0
【解决方案】FWDM器件耦合系统解决方案

01 WDM技术及系统简介

       WDM(Wavelength Division Multiplexing)波分复用技术,在指单一光纤内同步传输多个不同波长的光波的信号复用传输技术。WDM系统在发送端,将不同规定波长的光载波进行合并,然后传入单模光纤;在接收端,将再由分波器将不同波长的光载波分开。由于不同波长的载波是相互独立的,所以可以wan美解决双向传输问题。如下图1,是典型的WDM系统功能框架图。


图1 典型WDM系统功能框架图

(图片来源于网络)


WDM系统,按其中通道容量分类,可分为如下两类:

       稀疏波分复用(CWDM):波长间隔大,一般为20nm;

       密集波分复用(DWDM):波长间隔小,小于等于0.8nm;

       WDM系统,按硬件产品的工作原理分类,可分为如下三类

       滤波片式(FWDM)

       熔融拉锥式(FBW)

       阵列波导光栅(AWG)

针对如上基于不同原理的三种常见波分复用器,其主要性能的规格特点,如下表1所示:


表1 三种常见波分复用器主要技术特点比较


02 FWDM器件简介

       FWDM通常称为三端口波分复用器,由薄膜滤波器(TFF)构成,TFF由几十层不同材料、不同折射率和不同厚度的介质膜组合而成。一层为高折射率,一层为低折射率,从而对一定的波长范围呈通带,而对另外的波长范围呈阻带,形成所要求的滤波特性。TFF工作原理如下图2所示:


图2 薄膜滤波器(TFF)工作原理

(图片来源于网络)


       该类介质薄膜型波分复用器是一种结构稳定的小型化无源光器件,信号通带平坦,插入损耗低,通路间隔度好。广泛应用于掺铒光纤放大器、拉曼放大器和WDM光纤网络中。实用型的该类复用器的典型结构如下图3所示:


图3 介质薄膜型波分复用器典型结构

(图片来源于网络)


03 FWDM器件的生产过程简介

FWDM器件的主要生产过程,由下列典型步骤构成:

       贴片→双线调节→组装与对光→半成品测试→封装→成品测试→包装→送检→入库


       不同的器件厂家,在器件制作的过程中,根据具体的工艺过程和技术特点,主要采用反射端耦合和透射端耦合两类耦合方式。


04 卓立汉光在FWDM器件生产流程中提供的解决方案

整体而言,FWDM耦合系统在产线上,具备如下主要功能:

       人工上、下料

       人工/自动点胶 

       自动耦合

       针对不同器件生产厂商的产线特点,卓立汉光向业内用户提供种类丰富、功能完整的自动耦合及手动耦合两个系列的产线解决方案。


01 FWDM器件产线自动耦合系统


       卓立汉光提供的自动耦合系统,根据器件耦合位置的不同,又分为反射端耦合和透射端耦合两个系列。

        反射端耦合系统的典型结构,如下图4所示。


图4 反射端自动耦合系统的典型架构


该系统的重要技术参数,如下表2所示。


表2 反射端自动耦合系统的主要技术参数


       该系统的核心部件,是如下图5所示的精密电动滑台LAK系列。根据不同的器件规格,系统所配用的电动滑台在一定产品系列中可选。


图5 自动耦合系统(反射端耦合)中的核心电动滑台LAK系列


透射端耦合系统的典型结构,如下图6所示。



图6 透射端自动耦合系统的典型架构


该系统的重要技术参数,如下表3所示。


表3 透射端自动耦合系统的主要技术参数


02 FWDM器件产线手动耦合系统


       卓立汉光在提供自动耦合系统的同时,根据部分用户的需求,也可以提供手动耦合系统,保证了FWDM器件产线适配耦合系统的灵活性,拓展了产品适用场景。

       手动耦合方案的典型架构,如下图7所示。


图7 手动耦合系统的典型架构


       该系统中的核心组件,是卓立汉光ZL系列多维手动精密调节系统,提供6个维度的独立调节功能,能够充分满足产线耦合精度的要求。ZL系列的调节维度描述如下图8所示。


图8 ZL系列手动调节系统架构及可调维度说明


03 耦合系统的附件或组件


       除了上述标准的自动耦合系统和手动耦合系统之外,卓立汉光还同时提供产线现场支撑该类耦合系统的高稳定度光学平台或高平整度不锈钢台面(面包板)。这些单品,可为不同用户在完善产线硬件构成方面提供周到全面的性能提升。所述各种常用附件分别如下图9和图10所示。


图9 标准尺寸的高稳定度气浮光学平台

图10 不同尺寸的高平整度不锈钢台面(面包板)

       另外,针对部分希望自行组建耦合系统的用户,若其产线应用中,对耦合系统的调节频率要求不高,卓立汉光通常推荐AK系列专用滑台作为其自建耦合系统的核心滑台。该系列产品的外观,如下图11所示。


图11 用户自建手动耦合系统核心组件AK系列手动滑台


       综上所述,针对光通讯领域内重要的FWDM器件的产线制造,卓立汉光提供的标准化自动耦合系统和手动耦合系统,充分满足了业内广大用户的生产需求;同时,为优化耦合系统的性能或适应少数用户个性化订单内容,卓立汉光同时提供性能优异的稳定支撑系统和关键核心组件。尽心服务所有用户,是卓立汉光不变的追求。


更多详细信息请与我们联系:010-56370168














2020-04-08 13:23:39 596 0
数据库管理系统是位于用户与 什么之间的软件系统
 
2010-12-28 13:44:02 331 3
实验室管理系统LIMS怎么进行系统的管理和维护?
实验室管理系统LIMS怎么进行系统的管理和维护?
2020-04-02 11:21:30 547 1

5月突出贡献榜

推荐主页

最新话题