仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

应用方案

仪器网/ 应用方案/ SP-200电化学工作站应用资料3

立即扫码咨询

联系方式:400-822-6768

联系我们时请说明在仪器网(www.yiqi.com)上看到的!

扫    码    分   享
In this study, we demonstrate a novel approach;atomic layer deposition (ALD);for the synthesis and investigation of Pt-Ru catalyst structures toward the oxidation of stoichiometric (1:1) methanol solutions in advanced direct methanol fuel cells. Two types of thin-film materials are investigated as catalysts for methanol oxidation: Pt-Ru films of varying ruthenium content that are co-deposited by ALD, and Pt skin catalysts made by depositing porous platinum layers of different thickness byALDon sputtered ruthenium films. MeCpPtMe3 and Ru(Cp)2 are used as precursors for Pt and Ru ALD, respectively, together with pure O2 as the counter reactant. The electrochemical behavior of the co-deposited Pt-Ru catalysts and the Pt skin catalysts for methanol oxidation is characterized using chronoamperometry and cyclic voltammetry in a 0.5MH2SO4/16.6MCH3OH electrolyte at room temperature. The results illustrate that the optimal stoichiometric Pt:Ru ratio for the co-deposited catalysts is ∼1:1, which is consistent with our previous study on sputtered Pt-Ru catalysts using the same CH3OH concentration. Moreover, we report that the catalytic activity of sputtered ruthenium catalysts toward methanol oxidation is strongly enhanced by the ALD Pt overlayer, with such skin catalysts displaying superior catalytic activity over pure platinum. The mechanistic aspects of our observations are discussed. SP-200便携式电化学工作站

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

推荐方案

在线留言

换一张?
取消