- 2025-01-10 10:53:10纳米空间分辨光谱
- 纳米空间分辨光谱是一种能够在纳米尺度上获取物质光谱信息的技术。它利用高分辨率的光谱仪和先进的成像技术,实现对微小区域内物质成分、结构和性质的精确分析。该技术广泛应用于材料科学、生物医学、环境监测等领域,为科研工作者提供了强大的分析工具,有助于揭示纳米尺度上的物理和化学过程。
资源:6162个 浏览:34次展开
纳米空间分辨光谱相关内容
纳米空间分辨光谱产品
产品名称
所在地
价格
供应商
咨询

- 纳米空间分辨超快光谱和成像系统
- 国外 欧洲
- 面议
-
清砥量子科学仪器(北京)有限公司
售全国
- 我要询价 联系方式

- 空间分辨质谱仪
- 国外 欧洲
- 面议
-
北京英格海德分析技术有限公司
售全国
- 我要询价 联系方式

- 多功能原位空间分辨反应器CPR
- 国外 欧洲
- 面议
-
清砥量子科学仪器(北京)有限公司
售全国
- 我要询价 联系方式

- ADMS 角分辨光谱测量仪
- 国内 广东
- 面议
-
广州标旗光电科技发展股份有限公司
售全国
- 我要询价 联系方式

- 红外成像与光谱系统 Vista-IR 高分辨纳米红外成像与光谱系统
- 国内 上海
- 面议
-
上海纳腾仪器有限公司
售全国
- 我要询价 联系方式
纳米空间分辨光谱问答
- 2025-05-21 11:15:25天文望远镜怎么分辨目镜
- 天文望远镜怎么分辨目镜 在天文观测中,目镜是影响视野和图像质量的关键组件之一。选择合适的目镜不仅能提高观测效果,还能让天文爱好者获得更加清晰、真实的天体影像。面对市面上种类繁多的目镜,如何分辨它们的性能和适用性却是许多入门者的难题。本文将深入探讨如何根据目镜的不同特点来选择和分辨,帮助天文爱好者根据个人需求作出明智的决策,从而提升观测体验。 1. 目镜的焦距 焦距是分辨目镜性能的基础参数之一。焦距越长,视场越大,适合进行低倍数观测,如观测星座或天体的广阔区域。反之,焦距较短的目镜则提供更高的放大倍数,适用于观察天体的细节,如行星或星云。通过选择合适焦距的目镜,可以根据不同天文目标需求调整视场大小和放大倍数。 2. 目镜的视场 视场(Field of View,简称FOV)是衡量目镜观察范围的一个重要指标,通常以角度表示。较宽的视场适合进行快速搜索天体或欣赏大范围的天区,而较窄的视场则能提供更加清晰和精确的细节,适合精细的行星观察。视场的选择与目镜的设计和焦距有着紧密关系,高品质的目镜往往能够在较大的视场中提供更少的畸变和更好的图像质量。 3. 目镜的放大倍率 放大倍率是通过目镜焦距与望远镜主镜焦距的比例来计算的。理想的放大倍率应根据天文目标和气候条件而定。例如,在稳定的气候和高质量的望远镜下,可以选择较高的放大倍率来细致观察星体。但需注意,过高的放大倍率可能导致图像模糊或视场过小。因此,合理的放大倍率能确保更优的观察效果。 4. 目镜的光学结构 目镜的光学设计决定了其图像的质量。常见的目镜设计包括凯尔纳目镜、沃尔特目镜和超级广角目镜等,每种设计都有其独特的优缺点。凯尔纳目镜具有较高的性价比,适合入门级使用;沃尔特目镜则提供更高的对比度和清晰度,适合中高级观测者;超级广角目镜则因其超大的视场和细致的图像质量,广受高级用户的青睐。不同的光学设计会影响观测时的舒适度、视野的清晰度以及天体细节的呈现。 5. 目镜的材料和镀膜 高质量的目镜通常使用优质光学玻璃,并通过特殊的镀膜技术来减少反射和提高透光率。镀膜层的数量和质量直接影响到目镜的成像质量,尤其是在低光环境下,镀膜的好坏会显著影响天体图像的清晰度与对比度。高质量的多层镀膜能够有效减少色差,提高图像的亮度与对比度,尤其适用于深空观测。 6. 目镜的眼距和舒适性 眼距(Eye Relief)是指目镜到眼睛之间的理想距离。对于佩戴眼镜的观测者,较长的眼距尤为重要,这能够提供更舒适的观测体验。大多数高品质目镜都设计有可调的眼距,方便不同用户的需求。眼距过短会导致图像边缘模糊,影响观察的舒适度和效果。 结语 通过对目镜焦距、视场、放大倍率、光学结构、镀膜质量以及眼距的分析,天文爱好者可以更加地选择适合自己需求的目镜。选择合适的目镜是提升天文观测质量的关键一步,了解其各种技术参数和特性,将使得观测体验更加丰富和清晰。在选择过程中,不仅要关注目镜的性能,还应考虑到个人的观察习惯和需求,终实现更高效、更满意的天文探索。
254人看过
- 2025-06-13 19:00:21钳形表怎么分辨火线零线
- 钳形表是电气工程中常用的一种电流测量工具,它能够通过电磁感应原理直接测量导体中的电流,而不需要切断电路或与电路接触。在实际应用中,钳形表不仅能够测量电流,还能够帮助我们识别电路中的火线与零线。对于非专业人员来说,区分火线和零线可能会有一定的难度,但通过钳形表的正确使用,可以简便地完成这一任务。本文将详细介绍如何使用钳形表分辨火线与零线,以确保电气设备的安全使用。 了解火线与零线的基本定义至关重要。火线是电源线路中的带电导线,其电压高于零线,且与电源的正极相连;而零线则是电流的回路,电压接近地电势,通常与地线相连。钳形表在分辨这两者时,依赖于其测量的电流方向和大小。通过合理的测量方式,我们能够判断出哪一根是火线,哪一根是零线。 使用钳形表进行分辨时,首先要确保钳形表的夹口完全围绕电线,且没有任何接触其他导体。在测量过程中,观察钳形表的指示,若指示方向与标准电流流向一致,且电流值符合火线的特性,说明该电线为火线。零线则通常表现为电流值接近零,或者电流的方向与正常回流方向相反。钳形表的交流电流检测功能可以帮助进一步确认电流的性质,从而准确识别火线和零线。 通过掌握钳形表的使用方法,准确分辨火线与零线不仅能提高电工操作的安全性,还能有效避免因电线接错而导致的电器故障。掌握这一技巧对于日常电气维修与安装工作至关重要,专业的操作和正确的判断能力是确保电力系统稳定、安全运行的基础。
174人看过
- 2022-11-25 13:34:50天美讲堂丨测试时间分辨光致发光光谱时激光光源的选择
- 随着光致发光(PL)研究的发展,对测量微弱的光致发光信号的高灵敏度仪器的需求日益增长。除了具有良好杂散光抑 制能力的光子计数探测器和单色器外,激发样品的光源也是测试时需要考虑的关键因素。皮秒脉冲二极管激光器和亚纳秒LED是时间相关单光子计数(TCSPC)的传统脉冲光源,该技术用于测量ps-μs范围内的PL衰减光谱。爱丁堡仪器公司的时间分辨PL光谱仪可以配备各种类型的脉冲激光器和LED,能够在TCSPC和多通道扫描(MCS)模式下工作,如EPL/EPLED, VPL/VPLED和HPL系列。Fig. 1 EPL-375, VPL-635, and HPL-785 sources from Edinburgh Instruments.EPL&EPLED -皮秒脉冲激光器&LEDsEPL及被广泛应用于时间分辨PL光谱,可提供高达20 MHz的重复频率和典型的脉冲宽度~100 ps,波长从375 nm到980nm。EPLED系列脉冲二极管相比于EPL具有较长的脉冲宽度(典型<1000 ps),但EPLED系列能够覆盖的紫外波长低至250 nm。EPLs和EPLEDs可以在TCSPC及MCS双模式下进行工作。在TCSPC模式下工作,可测试发光寿命的范围为10 ps-50 us,在MCS模式下工作,发光寿命为10ns-400 ms。广泛通用于大多数时间分辨的光致发光实验测试,EPL和EPLED光源的组合可以满足大多数的研究需求。HPL -高功率和高重复率皮秒脉冲激光器HPL是高功率和高重复率皮秒脉冲激光器。可以在高达80MHz的重复频率下工作,并提供两种操作模式:标准及高功率模式。在高功率模式下,HPL激光器产生的脉冲强度能够提高50倍之多。这对于低光致发光量子产率(PLQY)和寿命长于几纳秒的样品十分重要。与EPL的EPLED源类似,HPL可以同时用于TCSPC和MCS模式。VPL&VPLED – 脉宽可调激光器&LEDsVPL和VPLED光源被设计成在MCS模式下工作,是PL衰变寿命从~100 ns到秒的理想选择。它们的输出是一个正方形脉冲,其长度由激光源上的脉宽刻度盘控制,范围从100 ns到1 ms,可选择连续(CW)出光模式。不仅可以作为磷光寿命测试的激发光源,还可以用于连续波模式下稳态光致发光光谱的激发光源。测试实例激发源的选择取决于样品的衰减特性。使用各种爱丁堡仪器脉冲源的热门研究领域的例子如下所示。实例1:钙钛矿样品的时间分辨光谱卤化物钙钛矿是近年来备受关注的一种新型太阳能电池材料。在钙钛矿太阳能电池中,光吸收产生载流子,然后向电极扩散。优化电池的效率涉及到最小化载流子重组,因此需要表征钙钛矿材料的发光寿命。测量钙钛矿的PL寿命具有挑战性。光致发光衰减是由短寿命(ns)组分和长(μs)寿命组分。因此在TCSPC模式下进行测量,以更好地解析快速组分。同时使用较低的激光重复频率来获取衰减的整个尾部。TCSPC和低重复率的结合导致相对较慢的数据采集。此外,部分钙钛矿样品还可能发生降解。因此选择高功率激发源可以大大缩短钙钛矿样品在TCSPC中的采集时间。下面的例子(图2)显示了高功率HPL激光器如何优于相同波长的EPL光源:在相同条件下,HPL激光器的捕获时间大约短20倍。Fig.2 TCSPC decays of a perovskite sample acquired in an FLS1000 spectrometer with (a) EPL-405 laser or (b) HPL-405 laser for excitation: experimental decay (red), Instrument Response Function (blue), and fit result (black). All other measurement conditions were identical. Fitted average lifetime tave and acquisition time tacq indicated in the graph.实例2:近红外成像探针的光致发光寿命生物成像实验通常包括荧光探针,标记样品,并在显微镜下观察。生物成像探针典型理想特性是生物相容性,易于功能化,稳定性高等。量子点是目前最有前途的成像探针材料之一,它们尺寸大小和组成可以调控,以微调其化学性质和激发/发射范围。Ag2S量子点的发射光谱在近红外范围内,适合于生物成像实验。这些样品通常是分散在低浓度的悬浮液中,因此它们的光致发光信号相对较低。此外,光子计数近红外探测器的灵敏度低于可见光探测器。因此建议使用HPL激光器而不是EPL进行测试。图3显示了在1170 nm处Ag2S量子点在甲苯中的TCSPC衰减。样品的亮度较低,用EPL二极管激光器测量需要1小时,相比之下,用HPL-670光源可以在20分钟内获得衰减。Fig.3 TCSPC decay (red) and exponential fit result (black) for Ag2S quantum dots in toluene, excited with an HPL-670 operating in high power mode at 1 kHz repetition rate in an FLS1000 spectrometer. The fitted average lifetime tacq is shown in the graph.实例3:单线态氧的光致发光寿命单重态分子氧(1O2)具有多种实际用途,包括光动力治 疗和合成有机化学。一种广泛的检测1O2的方法是测量它在1270 nm处的发光。然而,单线态氧磷光信号很弱,在低浓度下很难测量。除了使用高灵敏度的近红外探测器外,强大的激光光源也十分重要。1O2的光致发光发生在微秒尺度,因此可以通过使用VPL激光器的MCS测量激发。图4显示了一个典型的例子,用VPL-445激光器在甲苯中激发四苯基卟啉(H2TPP)光敏剂溶液。激光激发的H2TPP将能量转移到溶液中的氧分子,产生1O2,然后缓慢衰变到基态发光。在图4中, VPL源的脉宽为50 us时,发光信号上升,在激光脉冲关闭时,在接下来的100 us时,发光信号衰减。Fig.4 MCS decay (red) and 1270nm exponential Fit Result (black) for a solution of H2TTP in toluene excited with a VPL445 in an FLS1000spectrometer. The VPL source operated produced 50 us pulses at 5 kHz repetition rate. The fit tave lifetime is shown in the graph.实例4:近红外探针的光致发光光谱VPL和 VPLED源是为时间分辨光谱瞬态测试而设计。但它们同时也可以在连续波CW模式下获取样品的PL发射光谱。对于这类型的实验,最常见的配置是将氙灯耦合到激发单色器,但如果激发波长不需要调谐,也可以考虑直接使用VPL激光器。根据所使用的波长和带宽,VPL可以比Xe灯更强。如图5所示,分别使用150 W Xe灯、VPL-635(CW模式)和HPL-670作为激发光源的FS5荧光光谱仪中获得的Ag2S量子点的PL发射光谱。Fig. 5 Photoluminescence emission spectra from Ag2S quantum dots in toluene acquired in FS5 Spectrofluorometer with Xe lamp, VPL-635 and HPL-670 for excitation. An excitation bandwidth of 10 nm was employed for the Xe lamp spectrum. The VPL-635 data were acquired with the laser operating in CW mode, and the HPL-670 data with the laser running at 80 MHz in high power mode. All other measurement conditions were identical between curves. 结论光致发光测试光源的选择取决于要研究的样品类型、可用的检测仪器和用户对采集速度的需求。爱丁堡仪器提供多种脉冲源,广泛的灵活性,以满足其特定的需求,能够实现优化脉冲宽度和能量,并减少采集时间,快速提高测试效率。
1317人看过
- 2024-12-02 14:53:27光栅光谱仪研究什么光谱类型?工作原理是什么?
- 光栅光谱仪研究什么光谱类型光栅光谱仪是一种重要的光谱分析工具,它通过将光束分散成不同波长的光谱线,帮助科学家和工程师研究物质的组成和特性。本文将详细探讨光栅光谱仪研究的不同光谱类型,以及它们在各领域的应用和意义。通过了解这些光谱类型,我们可以更好地利用光栅光谱仪进行各种科学研究,提升分析的精度和效率。光栅光谱仪的工作原理光栅光谱仪通过光栅的衍射作用,将白光(或其他光源发出的光)分散成不同波长的光谱。光栅的表面刻有细密的刻痕,这些刻痕会根据入射光的波长,将光线按照不同的角度散开。通过探测不同角度的光,可以获得光谱中各个波长的信息,从而分析光源的特性或物质的组成。可见光谱在光栅光谱仪的应用中,可见光谱是常见的一种光谱类型。可见光谱指的是人眼能够感知的光波范围,通常波长在380 nm到750 nm之间。利用光栅光谱仪研究可见光谱,可以帮助我们分析物质的颜色、光学性质及其分子结构。紫外-可见光谱(UV-Vis)紫外-可见光谱(UV-Vis)是另一种重要的光谱类型,通常用于研究物质对紫外光和可见光的吸收特性。紫外光的波长范围约为10 nm至400 nm,而可见光的波长为400 nm至750 nm。光栅光谱仪能够分辨紫外和可见区域的光谱特征,帮助研究人员分析物质的电子结构、分子吸收特性等。在环境监测、食品检测和生命科学中,UV-Vis光谱分析常用于检测水质中的污染物,或者用于生物样品的浓度测定。红外光谱(IR)红外光谱是一种广泛应用于分子分析的技术,尤其在化学和材料科学领域。红外光的波长范围从750 nm到1 mm。通过光栅光谱仪分析红外光谱,可以获得分子的振动和转动信息,从而了解分子的结构和化学组成。红外光谱仪常用于有机化合物的结构分析、药物研发以及环境科学中对空气和水中有机污染物的检测。拉曼光谱拉曼光谱是一种通过分析散射光谱来研究物质分子振动模式的技术。尽管拉曼光谱并非直接通过光栅分光器获取,但现代光栅光谱仪的组合技术使其成为一种有效的分析工具。通过激光照射样品,拉曼光谱仪能够捕捉分子振动和旋转模式的变化,进而提供分子的化学信息。X射线光谱X射线光谱主要用于研究物质的元素组成。X射线具有极短的波长(通常小于10 nm),能够穿透物质并与物质中的原子相互作用,产生特定的荧光或散射光。光栅光谱仪在X射线衍射和X射线荧光分析中有着重要应用。
146人看过
- 2022-01-12 09:51:43推介系统」时间分辨荧光共聚焦显微成像及光谱系统TRPL Ma
- TRPL Mapping系统简介:时间分辨荧光共聚焦显微成像及光谱系统 MicroTime100 & FluoTime300将正置共聚焦荧光寿命显微镜和荧光寿命光谱仪结合在一起,能实现几百nm的空间分辨率和ps~s的荧光寿命测试和光谱测试。能用于检测:荧光共聚焦成像、荧光寿命成像、时间分辨光谱、稳态激发/发射谱、时间分辨荧光共聚焦显微光谱、自由选取ROI的微区(时间分辨)荧光成像和(时间分辨)光谱,并且支持升级单分子光谱功能(闪烁,反聚束)、拓展了FLIM和红外部分,完全适用于诸多薄膜、纳米材料的研究,是研究时间分辨光致发光的理想工具。TRPL Mapping系统工作原理图:TRPL Mapping系统产品组合:主要特点:• 在共聚焦成像基础上,可选点做微区PL、TRPL测试• 半导体激光器波长从375nm到1060nm可选• 可配置多个单光子探测器,用于反聚束检测• 纳米级XYZ 扫描台• 几百nm的空间分辨率,皮秒到秒级别的寿命测量范围• 探测波长范围从350nm至1000nm可选,可扩展至1700nm• 高配版光谱仪支持氙灯激发,低温和量子产率扩展主要功能:• 荧光寿命成像 (FLIM)• 磷光寿命成像(PLIM)• 荧光共振能量转移(FRET)• 模式匹配分析• 时间分辨光致发光(TRPL)• TRPL 成像• 反聚束效应主要应用:• 单分子光谱/探测• 单线态氧研究• 荧光上转换• 荧光各向异性研究• 稳态荧光光谱测量• 量子产率测量• 光化学研究• LEDs,OLED,量子点检测应用实例:1、TRPL for Semiconductor Analysis—Device Architecture Characterization用于半导体分析的TRPL——器件结构表征2、CIGS MAPPING对CIGS材料的mapping,通过荧光寿命的分析,可以直观看出缺陷3、perovskite solar cells4、Carrier diffusionGaAsP 量子阱系统中的载流子扩散卤化物钙钛矿晶体中的载流子扩散通过对时间和三维空间的4维数据的采集,可以可视化半导体/太阳能电池不同区域和深度的载流子扩散。因此,它们可以揭示载流子扩散的局部变化以及诸如载流子缺陷和晶体边界等微尺度的异质性。如需了解更多详情,请随时咨询我们的销售工程师!
544人看过
- 公司产品
- 光学玻璃超声波清洗机
- 矿井通讯管理系统
- 铝制品阳极氧化
- 矿用人员调度通信系统
- 油液污染度
- 产品耐磨检测试验
- 矿井应急通信系统
- 分次实验elisaUb样本
- ECOTROL膜片
- 人巨噬细胞炎性蛋白2
- 人β2糖蛋白1抗体IgA试剂盒
- 小鼠Ⅲ型前胶原肽
- 全自动荧光寿命
- 1um飞秒激光器
- 泰克任意波形发生器
- 分次实验elisaTRAb样本
- 人丙酮酸激酶
- 马主要组织相容性复合体
- 高功率飞秒激光器
- 精子胚胎存储
- 兔血管紧张素Ⅱ
- 荧光显微光谱仪
- β2-GP1
- FSH4手持频谱仪
- 手机保护片玻璃清洗
- 鸡白痢抗体检测试剂盒
- GMA滚动膜片
- 高速试验机
- 空间分辨超快光谱及成像
- 小鼠泛素蛋白
- 阳极氧化设备
- 人蛋白二硫化物异构酶前体试剂盒
- 超高分子管推压机
- OCT光栅
- 进口高压蒸汽灭菌器厂家
- 分次实验elisaEGF样本

