
- 2025-01-10 10:50:40锌荧光探针
- 锌荧光探针是一种用于检测生物体内或溶液中锌离子浓度的荧光化学试剂。它通过特定的荧光基团与锌离子结合后,荧光性质发生变化(如荧光强度增强、减弱或波长移动),从而实现对锌离子的定量或定性检测。锌荧光探针具有灵敏度高、选择性好、操作简便等优点,广泛应用于生物学、医学、环境科学等领域,为锌离子的相关研究提供了有力工具。
资源:2975个 浏览:11次展开
锌荧光探针相关内容
锌荧光探针产品
产品名称
所在地
价格
供应商
咨询
- DRAQ5 荧光探针
- 国内 上海
- 面议
-
阿拉丁试剂(上海)有限公司
售全国
- 我要询价 联系方式
- DRAQ7 荧光探针
- 国内 上海
- 面议
-
阿拉丁试剂(上海)有限公司
售全国
- 我要询价 联系方式
- DiD细胞膜荧光探针红色
- 国内 上海
- 面议
-
上海富衡生物科技有限公司
售全国
- 我要询价 联系方式
- DiI细胞膜荧光探针橙红色
- 国内 上海
- 面议
-
上海富衡生物科技有限公司
售全国
- 我要询价 联系方式
- DiO细胞膜荧光探针绿色
- 国内 上海
- 面议
-
上海富衡生物科技有限公司
售全国
- 我要询价 联系方式
锌荧光探针问答
- 2020-11-10 10:40:12微波消解锌精矿与锌焙砂检测锌镉总量
- 1 前言锌精矿一般是由铅锌矿或含锌矿石经破碎、球磨、泡沫浮选等工艺而生产出的达到国家标准的含锌量较高的矿石,是生产金属锌、锌化合物等的主要原料。锌焙砂是锌精矿经焙烧后所得的产物,褐色微颗粒状固体,主要含氧化锌,硫酸锌,硫化锌等,属于中间产品,是生产直接法氧化锌、电解锌、电炉锌粉等生产原料。我们通过微波消解的方法对锌精矿及锌焙砂进行前处理,然后用原子吸收分光光度计检测锌元素与镉元素的总量。2 仪器与试剂2.1 仪器新仪 MASTER-40 微波消解仪,赶酸器,分析天平(十万分之一)等。2.2 试剂硝酸(68%),盐酸(38%),氢氟酸(40%)3 实验方法3.1 样品制备矿石类样品在实验前要尽量粉碎,颗粒度越小,接触面积越大,越有利于消解实验的进行。3.2 微波消解样品矿石类样品主要成分是无机盐类以及金属氧化物,需要使用盐酸来进行实验。这一类样品通常会含有硅元素,消解实验还需要加入一定的氢氟酸。而硝酸是重金属消解最常用的酸,硝酸具有很强的酸性和氧化性,且绝大多数硝酸盐易溶于水,为后续测试带来方便,我们使用硝酸+盐酸+氢氟酸的混酸体系来进行实验。3.2.1 锌精矿样品消解实验选取三类锌精矿样品分别称取三组,每组约 0.1g(精确至 0.1mg),加入 6mL 硝酸、2mL盐酸和 2m 氢氟酸(同时添加试剂空白),静置 30min 左右,组装消解罐进行实验,参数如下:实验结束,待冷却至室温后取出消解罐,转移至通风橱中打开,赶酸后用纯水定容至 50mL容量瓶中。3.2.2 锌焙砂样品消解实验称取锌焙砂样品 0.1g(精确至 0.1mg),按照 3.2.1 的参数进行实验。实验结束,冷却后取出,转移至通风橱中打开消解罐,消解液中含有大量白色沉淀。通过分析逆王水氢氟酸体系无法将泥岩样品消解,样品中含有较多的氧化物,改变盐酸与硝酸的比例,采用王水氢氟酸的体系来进行消解实验,选取三类锌焙砂样品分别称取三组,每组约 0.1g(精确至 0.1mg),加入 2mL 硝酸、6mL盐酸和 2m 氢氟酸(同时添加试剂空白),静置 30min 左右,组装消解罐进行实验,参数如下:实验结束,待冷却至室温后取出消解罐,转移至通风橱中打开,赶酸后用纯水定容至 50mL容量瓶中。3.3 取样量矿石样品主要成分是无机盐类,也含有一定量的碳,实验时会生成一定量二氧化碳,而且盐酸的蒸气压较高,取样量应控制在 0.2g 左右。4 结果与讨论矿石类样品因成分相对稳定,且成分复杂,需要多种试剂组成混酸体系进行消,而且需要很长的时间,可选用硝酸+盐酸+氢氟酸的混酸体系进行实验,210℃保温 2h,消解完成后如有残渣,可通过过滤去除,再上机检测。本次实验所用的锌精矿及锌焙砂样品,检测锌和镉的总量,回收率均在 98%~100%,元素损失较少。注意事项1.实验过程中加入了氢氟酸,为防止对玻璃器皿的腐蚀,消解后需进行赶酸处理。2.锌矿的种类较多,不同类型的样品组分差异较大,要根据样品的具体属性,适当调整酸体系,寻找ZJ方案。3.如样品中含有较多的钙镁元素,会与氢氟酸形成氟化物沉淀,可以选择氟硼酸进行替换。
403人看过
- 2022-04-18 13:45:53Neuron:北大李毓龙课题组构建一种全新的ATP荧光探针
- 文章概述三磷酸腺苷(Adenosine 50-triphosphate,ATP)是一种广泛存在于体内的能量存储分子。除了参与细胞内的能量代谢功能外,越来越多的证据表明,释放到细胞外空间的ATP可以作为一种分子信号(嘌呤能递质),能够结合并激活离子型P2X受体以及代谢型P2Y受体。在神经系统中,释放的ATP参与了多中生理病理过程,包括痛觉感受、机械/化学感知信号转导、突触传递、损伤、炎症等。对于ATP在这些生理过程中的作用,目前的研究并未完全阐明。为了进一步研究ATP的生理功能,2021年12月22日,北京大学生命科学学院李毓龙教授团队发表在《Neuron》期刊上发表题为“A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo”的研究论文,该项工作展示了团队最新开发的一种可遗传编码的荧光分子探针——GRABATP1.0(简称ATP1.0;GRAB:G protein-coupled receptor activation-based sensors),该探针以P2Y受体作为ATP的结合支架,能够对细胞外的ATP进行高灵敏度、高选择性以及高时空分辨率的实时测量。该项工作是李毓龙教授团队在相继开发了乙酰胆碱、多巴胺、去甲肾上腺素、血清素和腺苷等一系列分子探针之后的后又一重要成果,对于我们深入研究并理解ATP的生理功能具有重要意义。核心观点1、ATP1.0是一个可遗传编码的细胞外ATP感受器;2、ATP1.0对于细胞外ATP具有高敏感性和高时空分辨率;3、ATP1.0可用于离体以及在体ATP释放的实时监测。研究结果分析1. ATP1.0表现出卓越的细胞外ATP检测性能为了开发一个遗传编码的ATP荧光探针,研究者首先系统地筛选了能够被ATP激活的G蛋白耦合受体(G protein-coupled receptors, GPCRs),包括人源的P2Y1、P2Y2、P2Y4、P2Y11、P2Y12和P2Y13等。以这些GPCRs作为支架,研究者将结构敏感的绿色荧光蛋白(circularly permuted enhanced GFP, cpEGFP)插入到这些受体结构中。其中hP2Y1在插入cpEGFP后表现出最佳的膜转运和对ATP的响应性,因此随后研究者选择了基于hP2Y1的嵌合体ATP0.1进行进一步优化,并且最终得到了对ATP荧光响应性最 好的ATP1.0。当ATP1.0在HEK293T细胞中表达时,它能够很好的被运输到细胞膜上表达,并对细胞外100mM的ATP产生一个~500%的dF/F0峰值。在特异性方面,ATP1.0对细胞外ATP的反应能够被P2Y1的拮抗剂MRS-2500阻断。ATP1.0对其它递质不会产生反应,包括谷氨酸、GABA、甘氨酸、多巴胺、去甲肾上腺素、血清素、组胺和乙酰胆碱等,对二磷酸腺苷(Adenosine Diphosphate, ADP)的反应与ATP类似,但是对于其它结构类似的嘌呤能分子或衍生物,如一磷酸腺苷、腺苷、二磷酸尿核苷等几乎不产生反应。ATP1.0的反应具有快速动力学的特征,其反应平均上升时间常数约为28 ms,平均衰减时间常数约为283 ms。在荧光强度上,ATP1.0被ATP激活时的亮度达到了直接表达hP2Y1-EGFP融合蛋白荧光强度的64%,并且ATP1.0在单光子激发下的光谱与EGFP相似,激发峰在500 nm,发射峰在520 nm。在与其它细胞外ATP分子探针的比较中,ATP1.0表现出更大的动态检测范围、更强的荧光反应、以及更低的信噪比。接下来,研究者探讨了ATP1.0在原代培养的星形胶质细胞和神经元中的表达能力以及反应性。ATP1.0能够广泛的表达到星形胶质细胞和神经元的细胞上,包括胞体、突起等部位。表达到星形胶质细胞和神经元上的ATP1.0对细胞外ATP均有较好的反应,其平均dF/F0峰值分别约为1000%和780%。此外,ATP诱导的荧光反应也能够被P2Y1、受体拮抗剂MRS-2500阻断。此外,与HEK293T中结果相似,神经元中表达的ATP1.0对ATP和ADP均有反应,但对一磷酸腺苷、腺苷、二磷酸尿核苷均无反应。更重要的是,ATP1.0在细胞表面非常稳定,在给予10mM 的ATP 两小时后,表达ATP1.0的神经元的荧光没有出现明显下降。综上所述,ATP1.0能够适用于多种类型的细胞,对细胞外的ATP产生高灵敏度、高选择性和高稳定性的荧光增强反应。2. ATP1.0可用于监测体外培养细胞外的ATP水平接下来,研究者测试了ATP1.0是否能够用于检测神经-胶质共培养细胞中内源性ATP的释放。在大脑中,机械刺激和细胞肿胀均能诱发胞内ATP被释放。在表达ATP1.0的细胞中,给予细胞机械刺激(利用玻璃微电极按压某个细胞),能够引起一个快速、局部增强的dF/F0信号,反映了ATP的释放。为了诱导细胞肿胀,研究者将细胞浸泡在低渗溶液(130 mOsm/kg)中;在1min内,dF/F0信号显著增加。并且在应用MRS-2500后,这两种刺激引起的反应都被完全抑制。研究者还发现,低渗刺激诱导的ATP释放可能不需要依赖经典的SNARE囊泡释放机制,因为细胞表达了破伤风毒素轻链(tetanus toxin light chain, TeNT,可以切割突触短肽并阻止胞外分泌过程),但是对低渗刺激诱导的反应没有影响;而作为对照,表达TeNT阻断了低渗刺激诱发的谷氨酸释放。除了刺激诱发的ATP释放外,研究者还观察到,即使在没有外部刺激的情况下,神经-胶质共培养细胞中也存在自发、局部、以及短暂的ATP1.0信号。在1.6mm2成像视野中,这些自发事件以1.2次/min的速率出现,其dF/F0的平均峰值约为210%。ATP自发释放的平均上升时间约为11s,衰减时间约为43s,其释放范围的平均直径约为32mm。为了确保ATP1.0信号反映了细胞外的ATP动态变化,研究者利用三磷酸腺苷双磷酸酶(ATP的水解酶)对细胞进行处理并成像,观察到三磷酸腺苷双磷酸酶能够显著阻断自发事件的发生。与以前的检测手段相比,ATP1.0具备更高的灵敏度,能够在普通条件下特异性的检测ATP的释放。3. ATP1.0可用于监测斑马鱼幼体中ATP的动态变化在证明了ATP1.0可用于体外ATP的检测后,研究者接着探讨了它是否可以用于监测体内(如斑马鱼中)ATP的动态变化。在斑马鱼幼体神经元中特异性地表达ATP1.0后,利用ATP局部处理会引起视顶盖中dF/ F0信号出现强烈的瞬时增加,这些信号能够被MRS-2500阻断。在验证了ATP1.0能够对外源ATP做出反应后,研究者进一步探讨了ATP1.0是否能够用于检测活斑马鱼内源性ATP的释放。ATP信号在促进小胶质细胞向损伤部位迁移中发挥关键作用。在表达ATP1.0的斑马鱼中,研究者发现激光消融诱导视顶盖损伤后会导致荧光增强,其反应从损伤部位向外呈放射状传播。损伤后11s和64s释放ATP的范围,其平均直径分别为~23mm和~34mm。接下来,研究者通过在斑马鱼的视顶叶中表达ATP1.0,同时监测ATP的释放和小胶质细胞的迁移,斑马鱼的小胶质细胞用红色荧光蛋白DsRed标记。研究者们发现,在激光消融后,小胶质细胞沿着ATP传播路径逐渐迁移到损伤部位。因此,ATP1.0非常适用于活体斑马鱼幼虫ATP监测,并且具有较高的时空分辨率。4. ATP1.0可用于监测小鼠全身炎症引起的ATP局部释放ATP是应对机体急慢性炎症反应的关键细胞外信使,但是在全身炎症期间ATP释放的模式还不清楚。研究者在小鼠腹腔注射细菌脂多糖(lipopolysaccharides, LPS)诱导全身炎症,并通过双光子显微镜来观察直接观察视觉皮层ATP1.0的荧光反应。注射LPS 24小时后,研究者观察到皮质内多次ATP局部释放事件,在记录的20min内,其发生频率约为5 – 10次/min。在星形胶质细胞中,ATP释放的上升时间相对较快(
335人看过
- 2023-06-28 14:01:21用户前沿丨复旦张凡教授团队《Nat. Nanotech.》: 构建近红外第二窗口新型稀土荧光探针用于实时动态的活体多重荧光成像
- 荧光成像技术具有非侵入性、即时反馈、高灵敏度以及高空间分辨率的特点,这使得其在生物医学成像领域具有不可替代的优势。而借助于多种荧光探针同时标记多个待测物的多重荧光成像技术的出现为研究复杂的生理-病理机制提供了有效的研究方法。然而在实际应用中,该技术仍然存在成像深度浅、成像分辨率和信噪比低以及无法多通道动态实时成像等诸多的挑战,其中缺乏高效的近红外荧光探针以及能够进行实时多重荧光成像的仪器是阻碍这一技术进一步发展的至关重要的因素。因此,能否开发系列近红外区荧光增强的探针以及相匹配的多通道实时成像的装置来解决上述难题呢?近日,Nature Nanotechnology期刊在线发表了复旦大学化学系张凡教授团队的科研成果“Fluorescence amplified nanocrystals in the second near-infrared window for in vivo real-time dynamic multiplexed imaging”),为以上难题的攻克提供了全新的思路。这也是复旦大学通过交叉学科研究取得的又一重大成果。复旦大学化学系2019级博士生杨一唯、陈莹为第 一作者;复旦大学化学系张凡教授、凡勇青年研究员为通讯作者。▌技术进步:近红外荧光成像逐步应用于实时动态的活体多重成像荧光是自然界中的一种光致发光现象。由于其灵敏度高、即时反馈、操作便捷等特点,使得荧光成像在临床医学诊断、基础生物学探索及解剖学结构研究中有着巨大的优势。而借助于多种荧光探针同时标记多个待测物的多重荧光成像技术,研究人员能够对多个待测物的活动进行实时动态的追踪,有利于揭示生物体复杂的生理-病理机制。目前该成像技术主要集中在可见光区(400-650 nm)及近红外一区(650-900 nm),由于存在生物组织对该窗口光的吸收和散射强等问题,使得在这个窗口内的光学穿透深度和成像分辨率都不理想。为了解决这个问题,研究人员通常会采用手术开辟视窗的方法来暴露所研究的部位,从而期望能够更精 准理解活体原位微环境的生理机制,但视窗不可避免地对正常生理环境造成破坏,为检测结果带来不可控的干扰。因此如何在深层组织中实现多重荧光成像是阻碍这一技术进一步发展的至关重要的问题。近年来的研究表明,近红外第二窗口的光(1000-1700 nm)在皮肤、脂肪和骨骼等生物组织中传播时受到比可见光和近红外一区光更小的散射作用和生物体自发荧光背景噪声。尤其对于波长位于1500-1700 nm的子成像窗口,其受到的组织散射进一步降低,生物体自发荧光背景噪声几乎消失,因此被认为是一个实现活体深组织高分辨和高信噪比成像极具发展潜力的生物“透明”窗口。然而位于该“透明”成像窗口的动态多重活体荧光成像研究仍旧不理想,一方面是受限于该成像窗口可用的荧光探针,目前已报道的只有基于Er3+的稀土荧光探针以及半峰宽度大的半导体量子点;另一方面是缺乏相应能够进行实时多重荧光成像的装置和技术,因此无法在活体实现实时动态的多重荧光成像。▌研究突破:开发荧光增强的近红外稀土荧光探针及双通道荧光成像装置实现实时动态的多重活体荧光成像针对以上难题,张凡教授团队开发了一系列立方晶相的稀土碱金属氟化物纳米荧光探针,并搭建了双通道荧光成像装置,在1500-1700 nm波段实现了活体实时动态的多重成像。传统的研究中,由于六方晶相的稀土碱金属氟化物(β-NaREF4)具有较小的声子能,从而导致更低的非辐射弛豫概率,通常被认为更加有利于提高发光效率,因此作为一种经典的稀土探针基质而广泛使用。而在张凡团队成员发现,相较于β-NaREF4基质,在立方晶相的碱金属氟化物(α-NaREF4)基质中,Tm3+掺杂的稀土荧光探针在1632 nm处中有近百倍的下转移发光增强。通过拉曼光谱、变温荧光及光子数测试证明α-NaREF4基质较高的声子能有效地促进Tm3+的电子从3H4能级通过非辐射跃迁的方式到达3F4能级,从而增强了3F4能级的电子布居,且立方相基质中激活剂离子间的交叉弛豫以及激活剂离子与敏化剂离子之间的能量传递过程也进一步导致了Tm3+在1632 nm处的下转移发光增强。基于此荧光增强机理,也实现了Er3+和Ho3+掺杂的近红外稀土荧光探针在1530 nm和1180 nm处不同程度的下转移发光增强。该Tm3+元素掺杂的新型近红外稀土荧光探针为近红外二区多重荧光成像提供了新的波长选择。图1:(a-b) Tm3+掺杂的立方相纳米颗粒核壳结构示意图及电镜图;(c-d) Tm3+掺杂的立方相及六方晶相纳米颗粒发射光谱及不同波长处发光强度柱状图;(e) 低温吸收光谱;(f) 基于Tm3+、Er3+、Ho3+掺杂的立方相纳米颗粒发射光谱及脂肪乳剂的吸收、散射曲线;(g) Yb-Tm体系能量传递机理;(h)Er3+和Ho3+元素掺杂的立方相和六方相纳米颗粒的发射光谱及荧光成像图。针对所开发的系列近红外第二窗口荧光增强的新型稀土荧光探针,进一步开发了与之匹配的高时空同步的实时动态多重成像装置。与常规通过切换滤光片实现多通道成像的系统相比,该成像装置能够对两个不同通道的荧光信号进行实时同步收集,体外不同荧光探针同时修饰的不同微球运动模拟实验也验证了装置能够保证双通道高度同步的时空成像,为后续多种新型近红外稀土荧光探针用于活体实时动态多重荧光成像打下基础。最 后,在生物组织精细结构水平上验证了该成像技术用于探索深组织生理活动机制的可行性。首先通过对不同近红外稀土荧光探针表面进行功能化修饰,实现了对活体小鼠脑部血管网络中各级血管的区分。团队随后使用激素刺激小鼠来模拟神经对血流的调控作用,利用该成像技术能够在不开辟颅窗的情况下实现对小鼠动脉血管的舒缩运动进行实时动态的监测,有望为血液动力学研究提供更加精 准的信息。为进一步探索该成像技术用于活体深组织多重荧光成像的潜力,团队利用开发的新型近红外稀土荧光探针特异性地 标记了小鼠的中性粒细胞,通过该成像技术实现了在单细胞水平上的免疫反应监测,能够对单个中性粒细胞在皮下炎症部位及脑损伤部位趋化性、外渗、激活等过程进行实时动态监测。相比于传统的成像方法,该近红外新型稀土荧光探针及双通道实时成像技术有效避免了开辟视窗造成组织损伤对观测结果带来的干扰,为在活体水平研究细胞免疫反应提供了新的思路。图2:(a-b) 基于新型近红外荧光探针构建的活体动态多重成像方案,实现了小鼠脑部血管舒缩运动的实时动态监测;(c-f) 基于新型近红外荧光探针构建的活体动态多重成像方案,实现了对中性粒细胞在皮下炎症部位趋化作用及外渗过程的实时动态监测和分析。(g-i) 基于新型近红外荧光探针构建的活体动态多重成像方案,实现了在脑卒中小鼠脑损伤部位激活态中性粒细胞免疫反应的实时动态成像。目前,尽管该研究已经取得了较好的初步应用效果,未来还需要更进一步地提高探针的发光效率以及增加荧光发射通道,从而满足对活体内更高成像速度、更深组织成像以及更高通量多重检测应用的需求。此外,改善荧光探针的功能修饰特性,增强与前沿生物与成像技术的兼容性等问题仍然有待后续研究。但是这一科研成果所点亮的诸多可能,都将为化学与材料科学、生物医学光子学、生命科学、生物医学工程和医疗诊断等领域拓宽研究视野。研究工作得到了复旦大学化学系、聚合物工程国家重 点实验室、上海市分子催化和功能材料重 点实验室、国家重 点研发项目、国家自然科学基金委员会、上海市科学技术委员会等机构与项目的大力支持。原文链接https://doi.org/10.1038/s41565-023-01422-2
149人看过
- 2018-11-26 18:49:09普通荧光探针和比色型荧光探针的区别
362人看过
- 2018-11-17 00:15:47荧光探针的基本信息
242人看过
- 产品搜索
- 空气温湿度传感器
- TCSC-500电子台秤
- XSR204
- SGK-2LB
- 透气性性能演示
- 洁净区压差计安装位置
- 低温反应器
- 高压传感器
- Au(111)
- 紫外线消毒器uvc155-10
- AFS-8230
- 在线溶解氧分析仪
- 高灵敏度线圈
- 十二水合草酸铈
- zeta电位分析测试
- 3D超景深显微镜
- syg-1型多功能光化学反应仪
- 摩擦做功实验器
- 激光测云仪
- TBS1000
- 法拉第旋光器
- GCMS-TQ8040
- 色度传感器
- 低温循环槽
- 电磁铁实验器
- 轮毂 六维力
- MARPOSS测量仪
- 全自动扫描仪
- 车轮六分力
- AFS8230
- ICP-MS仪器操作手册
- nanodrop one
- 水蒸气透过率
- 无纺布透气性
- 臭氧机JF-K70
- 锌荧光探针