- 2025-01-10 10:50:43荧光成像引导
- 荧光成像引导是一种利用荧光标记物对生物体内特定分子或细胞进行成像的技术。该技术通过激发荧光标记物发出荧光,实现对生物体内目标结构的可视化。荧光成像引导具有高灵敏度、高分辨率、实时成像等特点,广泛应用于生物医学研究、临床诊断、药物研发等领域。通过该技术,可以实时监测生物体内分子或细胞的变化,为疾病诊断和治疗提供重要依据。
资源:99个 浏览:39次展开
荧光成像引导相关内容
荧光成像引导文章
-
- 【文献速递】结合吲哚菁绿的血小板膜包被的溶瘤痘苗病毒用于结直肠癌的近红外二区荧光成像引导的多模式治疗
- 浙江省人民医院临床医学研究所牟晓洲研究团队研究新进展
荧光成像引导产品
产品名称
所在地
价格
供应商
咨询

- FluorCam大型叶绿素荧光成像平台
- 国外 欧洲
- 面议
-
北京易科泰生态技术有限公司
售全国
- 我要询价 联系方式

- MC500Pro荧光成像摄像头
- 国内 上海
- 面议
-
上海缔伦光学仪器有限公司
售全国
- 我要询价 联系方式

- FluorCam大型植物多光谱荧光成像平台
- 国外 欧洲
- 面议
-
北京易科泰生态技术有限公司
售全国
- 我要询价 联系方式

- FluorCam大型叶绿素荧光成像平台
- 国外 欧洲
- 面议
-
北京易科泰生态技术有限公司
售全国
- 我要询价 联系方式

- 易科泰便携式叶绿素荧光成像技术方案
- 国内 北京
- 面议
-
北京易科泰生态技术有限公司
售全国
- 我要询价 联系方式
荧光成像引导问答
- 2023-02-17 12:55:08FluorCam叶绿素荧光成像技术及其应用研讨会
- FluorCam叶绿素荧光成像技术及其应用研讨会 —— 会议时间 ——2020年7月7日 (周二) 14:30 – 15:30—— 会议主题 ——FluorCam叶绿素荧光成像技术及其应用叶绿素荧光成像最 新研究技术介绍、国际知名的 FluorCam产品功能介绍及安装应用案例等—— 主讲人 ——李 川北京易科泰公司EcoTech实验室高级工程师研究领域:植物/藻类光合作用机理、植物逆境胁迫、植物生理生态、作物育种等—— 参会方式 ——腾讯会议;微信群内发会议链接(请扫码报名参会)
280人看过
- 2023-03-03 16:36:05荧光成像在血管神经外科手术中的优势
- 荧光素和ICG荧光血管造影改变了血管神经外科医生的手术方式,它提供具有丰富信息的术中视图。2021神经可视化峰会是一个汇集quan球神经外科医生的特别活动,在此期间,A教授在一次家du网络研讨会上分享了他在荧光引导下的神经外科手术经验,介绍了几个临床案例。学习要点了解荧光素钠和ICG的历史以及它们在血管神经外科的首次应用探讨荧光技术在神经外科的优势,及其如何为神经外科医生提供有价值的信息观看荧光引导下的神经外科手术视频,包括动静脉畸形(AVM)、搭桥和动脉瘤手术的临床案例荧光成像在神经外科的应用:荧光素钠和ICG的历史及其首次应用荧光素钠自20世纪60年代末以来一直用于神经外科,最初由医生对其进行了描述,医生在开颅时进行了硬膜外血管造影术。吲哚菁绿(ICG)在很久以后才被应用于评估脑血流。它是由医生在21世纪初引入的,并决定将这种广泛应用于眼科的技术转移到神经外科。ICGzui早用于神经外科评估动脉瘤,并逐步应用于几种神经外科病症:评估旁路通透性、AVM手术、评估海绵状血管瘤手术和神经肿瘤学中静脉引流异常。目前,脑荧光血管造影使用ICG的情况更为普遍。荧光造影引导下的神经外科:荧光素钠与ICG的优缺点荧光素钠视频血管造影有一些优势,包括成本较低,精细细节的可视化,以及可以直接在显微镜下通过荧光过滤器进行观察。ICG需要单独的红外摄像机,可以将信息显示在不同的屏幕上。荧光素荧光也为无牵开器手术提供了有用的价值,这与手术创伤的降低密切相关。荧光素钠的另一个优点是作为一种相对惰性的染料,急性毒性研究显示尽管会诱发一些严重的过敏反应,但它对人类没有特殊危害。此外,成本也非常低。荧光素钠的缺点:它在血液中至少停留一小时,需要长时间等待后才能重复使用。ICG的半衰期为3至4分钟,因此可以在短时间内进行第二次或第三次注射。但在某些病人群体中,如对碘过敏的病人或甲状腺功能亢进的病人,它是禁用的。而且它价格昂贵。荧光造影在动静脉畸形(AVM)手术中的应用在一名患有左额叶动静脉畸形的患者中,选择了对侧入路,以避免优势半球,并更好地控制进料器。使用FL560术中荧光素荧光模块,可通过显微镜在手术野内精确地显示时间、给药器、静脉和AVM周围的短血管,并具有清晰的对比度。但在使用ICG时,用户必须查看另一个屏幕,而且无法看到AVM的周围环境。必须通过从显示器转移到手术野来进行解释。荧光素荧光更容易在手术野中直接识别供血血管,并将实质图像更好地可视化。图1:用FL560荧光素荧光模块观察AVM与用ICG观察AVM。图片由A教授提供。荧光造影在搭桥手术中的应用在一例烟雾病患者中,施行了颞浅动脉-大脑中动脉搭桥术(STA-MCA)。荧光素钠荧光对探索和检查STA以及在手术野直接看到动脉的功能非常有用。这是了解搭桥手术工作方式的一种非常有效的技术。它提供了良好的血管和组织灌注的可视化,尽管厚壁血管不太明显。图2:在搭桥手术中使用FL560荧光素荧光模块。图片由A教授提供。荧光造影在动脉瘤手术中的应用在一名患有中动脉小动脉瘤的患者中,使用荧光素荧光支持夹闭。造影剂有助于暴露动脉瘤,并在手术野中直接观察到穿支及其灌注情况。使用ICG可能会忽略这一点,因为它需要查看另一个屏幕,且呈现的是黑白图像。在荧光素荧光下,闭塞的动脉瘤清晰可见。但由于动脉瘤手术往往很快,而且厚壁血管也不太明显,所以无法进行重复使用。荧光素钠可与ICG结合使用,两者并不相互排斥。图注:利用FL560荧光素荧光模块进行动脉瘤夹闭。图片由A教授提供。综上所述,荧光素视频血管造影具有手术野三维可视化的优势,可以实时进行手术操作,尤其是对狭窄视野内的小血管。此外,它的成本更低。荧光素血管造影的缺点是无法观察到厚壁血管中的血流,而且染料在血液中停留的时间较长。ICG血管造影技术和荧光素血管造影技术为神经外科医生提供了重要优势。
304人看过
- 2023-06-28 14:01:21用户前沿丨复旦张凡教授团队《Nat. Nanotech.》: 构建近红外第二窗口新型稀土荧光探针用于实时动态的活体多重荧光成像
- 荧光成像技术具有非侵入性、即时反馈、高灵敏度以及高空间分辨率的特点,这使得其在生物医学成像领域具有不可替代的优势。而借助于多种荧光探针同时标记多个待测物的多重荧光成像技术的出现为研究复杂的生理-病理机制提供了有效的研究方法。然而在实际应用中,该技术仍然存在成像深度浅、成像分辨率和信噪比低以及无法多通道动态实时成像等诸多的挑战,其中缺乏高效的近红外荧光探针以及能够进行实时多重荧光成像的仪器是阻碍这一技术进一步发展的至关重要的因素。因此,能否开发系列近红外区荧光增强的探针以及相匹配的多通道实时成像的装置来解决上述难题呢?近日,Nature Nanotechnology期刊在线发表了复旦大学化学系张凡教授团队的科研成果“Fluorescence amplified nanocrystals in the second near-infrared window for in vivo real-time dynamic multiplexed imaging”),为以上难题的攻克提供了全新的思路。这也是复旦大学通过交叉学科研究取得的又一重大成果。复旦大学化学系2019级博士生杨一唯、陈莹为第 一作者;复旦大学化学系张凡教授、凡勇青年研究员为通讯作者。▌技术进步:近红外荧光成像逐步应用于实时动态的活体多重成像荧光是自然界中的一种光致发光现象。由于其灵敏度高、即时反馈、操作便捷等特点,使得荧光成像在临床医学诊断、基础生物学探索及解剖学结构研究中有着巨大的优势。而借助于多种荧光探针同时标记多个待测物的多重荧光成像技术,研究人员能够对多个待测物的活动进行实时动态的追踪,有利于揭示生物体复杂的生理-病理机制。目前该成像技术主要集中在可见光区(400-650 nm)及近红外一区(650-900 nm),由于存在生物组织对该窗口光的吸收和散射强等问题,使得在这个窗口内的光学穿透深度和成像分辨率都不理想。为了解决这个问题,研究人员通常会采用手术开辟视窗的方法来暴露所研究的部位,从而期望能够更精 准理解活体原位微环境的生理机制,但视窗不可避免地对正常生理环境造成破坏,为检测结果带来不可控的干扰。因此如何在深层组织中实现多重荧光成像是阻碍这一技术进一步发展的至关重要的问题。近年来的研究表明,近红外第二窗口的光(1000-1700 nm)在皮肤、脂肪和骨骼等生物组织中传播时受到比可见光和近红外一区光更小的散射作用和生物体自发荧光背景噪声。尤其对于波长位于1500-1700 nm的子成像窗口,其受到的组织散射进一步降低,生物体自发荧光背景噪声几乎消失,因此被认为是一个实现活体深组织高分辨和高信噪比成像极具发展潜力的生物“透明”窗口。然而位于该“透明”成像窗口的动态多重活体荧光成像研究仍旧不理想,一方面是受限于该成像窗口可用的荧光探针,目前已报道的只有基于Er3+的稀土荧光探针以及半峰宽度大的半导体量子点;另一方面是缺乏相应能够进行实时多重荧光成像的装置和技术,因此无法在活体实现实时动态的多重荧光成像。▌研究突破:开发荧光增强的近红外稀土荧光探针及双通道荧光成像装置实现实时动态的多重活体荧光成像针对以上难题,张凡教授团队开发了一系列立方晶相的稀土碱金属氟化物纳米荧光探针,并搭建了双通道荧光成像装置,在1500-1700 nm波段实现了活体实时动态的多重成像。传统的研究中,由于六方晶相的稀土碱金属氟化物(β-NaREF4)具有较小的声子能,从而导致更低的非辐射弛豫概率,通常被认为更加有利于提高发光效率,因此作为一种经典的稀土探针基质而广泛使用。而在张凡团队成员发现,相较于β-NaREF4基质,在立方晶相的碱金属氟化物(α-NaREF4)基质中,Tm3+掺杂的稀土荧光探针在1632 nm处中有近百倍的下转移发光增强。通过拉曼光谱、变温荧光及光子数测试证明α-NaREF4基质较高的声子能有效地促进Tm3+的电子从3H4能级通过非辐射跃迁的方式到达3F4能级,从而增强了3F4能级的电子布居,且立方相基质中激活剂离子间的交叉弛豫以及激活剂离子与敏化剂离子之间的能量传递过程也进一步导致了Tm3+在1632 nm处的下转移发光增强。基于此荧光增强机理,也实现了Er3+和Ho3+掺杂的近红外稀土荧光探针在1530 nm和1180 nm处不同程度的下转移发光增强。该Tm3+元素掺杂的新型近红外稀土荧光探针为近红外二区多重荧光成像提供了新的波长选择。图1:(a-b) Tm3+掺杂的立方相纳米颗粒核壳结构示意图及电镜图;(c-d) Tm3+掺杂的立方相及六方晶相纳米颗粒发射光谱及不同波长处发光强度柱状图;(e) 低温吸收光谱;(f) 基于Tm3+、Er3+、Ho3+掺杂的立方相纳米颗粒发射光谱及脂肪乳剂的吸收、散射曲线;(g) Yb-Tm体系能量传递机理;(h)Er3+和Ho3+元素掺杂的立方相和六方相纳米颗粒的发射光谱及荧光成像图。针对所开发的系列近红外第二窗口荧光增强的新型稀土荧光探针,进一步开发了与之匹配的高时空同步的实时动态多重成像装置。与常规通过切换滤光片实现多通道成像的系统相比,该成像装置能够对两个不同通道的荧光信号进行实时同步收集,体外不同荧光探针同时修饰的不同微球运动模拟实验也验证了装置能够保证双通道高度同步的时空成像,为后续多种新型近红外稀土荧光探针用于活体实时动态多重荧光成像打下基础。最 后,在生物组织精细结构水平上验证了该成像技术用于探索深组织生理活动机制的可行性。首先通过对不同近红外稀土荧光探针表面进行功能化修饰,实现了对活体小鼠脑部血管网络中各级血管的区分。团队随后使用激素刺激小鼠来模拟神经对血流的调控作用,利用该成像技术能够在不开辟颅窗的情况下实现对小鼠动脉血管的舒缩运动进行实时动态的监测,有望为血液动力学研究提供更加精 准的信息。为进一步探索该成像技术用于活体深组织多重荧光成像的潜力,团队利用开发的新型近红外稀土荧光探针特异性地 标记了小鼠的中性粒细胞,通过该成像技术实现了在单细胞水平上的免疫反应监测,能够对单个中性粒细胞在皮下炎症部位及脑损伤部位趋化性、外渗、激活等过程进行实时动态监测。相比于传统的成像方法,该近红外新型稀土荧光探针及双通道实时成像技术有效避免了开辟视窗造成组织损伤对观测结果带来的干扰,为在活体水平研究细胞免疫反应提供了新的思路。图2:(a-b) 基于新型近红外荧光探针构建的活体动态多重成像方案,实现了小鼠脑部血管舒缩运动的实时动态监测;(c-f) 基于新型近红外荧光探针构建的活体动态多重成像方案,实现了对中性粒细胞在皮下炎症部位趋化作用及外渗过程的实时动态监测和分析。(g-i) 基于新型近红外荧光探针构建的活体动态多重成像方案,实现了在脑卒中小鼠脑损伤部位激活态中性粒细胞免疫反应的实时动态成像。目前,尽管该研究已经取得了较好的初步应用效果,未来还需要更进一步地提高探针的发光效率以及增加荧光发射通道,从而满足对活体内更高成像速度、更深组织成像以及更高通量多重检测应用的需求。此外,改善荧光探针的功能修饰特性,增强与前沿生物与成像技术的兼容性等问题仍然有待后续研究。但是这一科研成果所点亮的诸多可能,都将为化学与材料科学、生物医学光子学、生命科学、生物医学工程和医疗诊断等领域拓宽研究视野。研究工作得到了复旦大学化学系、聚合物工程国家重 点实验室、上海市分子催化和功能材料重 点实验室、国家重 点研发项目、国家自然科学基金委员会、上海市科学技术委员会等机构与项目的大力支持。原文链接https://doi.org/10.1038/s41565-023-01422-2
231人看过
- 2019-06-10 13:43:45PerkinElmer 活体荧光成像:全新生物相容性分析技术!
- 我们Z新的出版附注中介绍了麻省理工学院研究人员近期的一篇论文。了解科学家如何使用 PerkinElmer 的活体荧光成像探针,快速且无创伤性的验证生物材料的活体生物相容性并进行准确定量。 阅读全文
392人看过
- 2018-11-10 19:59:14电磁阀内部引导方式和外部引导方式有什么不一样
1210人看过

