
- 2025-01-21 09:30:09二维超导天线
- 二维超导天线是利用超导材料制成的具有二维结构的天线。它具有高频率、低损耗、高灵敏度等特点,能够在高频段实现高效能辐射和接收。二维超导天线在无线通信、雷达、卫星通信等领域有广泛应用前景,其潜在优势包括提高通信效率、增强信号质量、减小设备体积等,对现代通信技术的发展具有重要意义。
资源:562个 浏览:16次展开
二维超导天线相关内容
二维超导天线资讯
-
- 我国自研“二维超导天线”可实现对1微瓦的电磁波信号的探测
- 二维层状单晶超导材料在国际上成为备受关注的研究重点。
二维超导天线产品
产品名称
所在地
价格
供应商
咨询
- 超导量子干涉仪器件 Laboratory SQUIDS
- 国外 美洲
- 面议
-
QUANTUM量子科学仪器贸易(北京)有限公司
售全国
- 我要询价 联系方式
- 太赫兹光电导天线阵列 交叉指型光电导天线 微透镜阵列太赫兹天线 IPCA
- 国外 欧洲
- 面议
-
上海屹持光电技术有限公司
售全国
- 我要询价 联系方式
- 二维位置传感器 S5990-01
- 国外 亚洲
- 面议
-
滨松光子学商贸(中国)有限公司
售全国
- 我要询价 联系方式
- 二维位置传感器 S2044
- 国外 亚洲
- 面议
-
滨松光子学商贸(中国)有限公司
售全国
- 我要询价 联系方式
- 二维位置传感器 S1880
- 国外 亚洲
- 面议
-
滨松光子学商贸(中国)有限公司
售全国
- 我要询价 联系方式
二维超导天线问答
- 2025-03-25 13:15:14超导量子磁力仪怎么用
- 超导量子磁力仪怎么用:深入解析与应用 超导量子磁力仪(SQUID)是一种高精度的磁场测量仪器,广泛应用于物理学、医学、工程学等多个领域。它能够检测极为微弱的磁场,甚至能精确到小于一皮特的量级。本文将详细介绍超导量子磁力仪的工作原理、使用方法以及在不同领域中的应用,为读者提供全面的了解。 1. 超导量子磁力仪的工作原理 超导量子磁力仪的核心技术基于超导量子干涉效应。通过利用超导材料的零电阻特性,SQUID能够实现极其灵敏的磁场探测。其核心部分是一个由两个超导环和一个弱耦合区域(通常是一个窄小的超导岛)构成的装置。由于量子干涉效应,当外部磁场通过这一区域时,会引起磁通量的变化,从而在仪器的输出端产生相应的电压变化。通过精密的电子设备,这些微弱的电压信号被检测并转换成可用的磁场数据。 2. 如何使用超导量子磁力仪 使用超导量子磁力仪需要对仪器的操作环境和操作步骤有一定了解。SQUID工作时需要在低温环境下进行,因为其超导特性在常温下无法发挥作用。通常使用液氮或液氦来冷却仪器,保持温度在接近零度的范围内。 在操作过程中,首先将待测物体或样品置于SQUID的感应区域。通过调节仪器中的电流或磁场源,精确控制磁场的变化范围。然后,观察和记录仪器输出的信号,数据采集设备会根据这些信号计算出样品的磁性特征。用户可以根据实验的需求,进行多次测量和数据处理,终得出所需的结果。 3. 超导量子磁力仪的应用领域 超导量子磁力仪在多个领域中都有广泛的应用,特别是在高精度磁场测量和医学成像方面。以下是其主要应用: 物理研究:SQUID用于探测和研究微弱的磁场变化,是研究超导、量子力学等高能物理领域不可或缺的工具。 医学成像:在磁共振成像(MRI)技术中,SQUID可用于检测脑电波活动,帮助神经科学研究人员更深入了解大脑功能。 材料科学:SQUID能够分析材料的磁性属性,尤其是在开发新型磁性材料时,提供关键的实验数据。 地球物理勘探:用于地质勘探中,SQUID可帮助科学家检测地下矿物和资源的磁场特征,为矿产资源的勘查提供重要数据。 4. 使用超导量子磁力仪的挑战与前景 尽管超导量子磁力仪具有极高的灵敏度,但其应用仍面临一些技术挑战。低温操作要求设备成本较高,且需要高水平的技术支持和维护。仪器的操作复杂性要求用户具有较强的专业知识和经验。未来,随着技术的发展和设备成本的降低,超导量子磁力仪的应用将更加广泛,特别是在医学诊断和新型材料研发领域。 超导量子磁力仪凭借其的磁场检测能力,成为了现代科学研究中不可替代的工具。理解其原理、正确使用方法以及应对可能的挑战,是保证测量精度和有效性的关键。随着技术的不断进步,我们有理由相信,SQUID将在更多领域发挥更大的作用。
16人看过
- 2023-04-08 09:13:40Spider2000+便携式二维拉曼成像光谱仪
- 1产品简介Spider2000+便携式二维拉曼成像光谱仪采用如海光电自主研发的科研级微型共焦拉曼光谱仪RMS2000作为拉曼内芯,从而使得它拥有高灵敏度、高分辨率、强穿透能力以及较好的抑制荧光干扰能力。优化的光路设计可使得拉曼激光光束在通过长焦显微物镜后光斑可达到微米级别,可精确采集微米级样品的拉曼光谱。此外,仪器采用高精度二维自动化移动平台,可实现自动扫描mapping成像功能。Spider2000+便携式二维显微拉曼成像光谱仪配备专门为拉曼系统设计的长焦显微物镜,Spider2000+增加上光源反射式照明成像,可通过CCD相机获得样品清晰的显微明场成像,激光经过物镜后光斑接近衍射极限,克服了普通拉曼系统中收集拉曼信号的焦面稍高于或稍低于实际焦面的问题,并且独特的共焦式设计使得样品荧光信号得到有效抑制,从而提高拉曼光谱质量。2产品特点高灵敏度:最低可检测到0.3%浓度无水乙醇特征峰。高分辨率:6cm-1@25μm狭缝。强大软件功能:支持mapping自动扫描、数据库识别等功能。高品质物镜,光斑可达微米级。高精度二维自动化平台。3应用领域4产品规格
165人看过
- 2023-03-20 00:22:5121℃室温超导实现了?有它,你也能测!
- 近日火爆全网的室温超导论文,再次将低温物理科研推到了大众的视野里。自昂内斯1911年发现汞金属的超导电性之后,各种超导材料的研究进入了爆炸式增长,从金属到合金超导体、铜氧化物超导体、重费米子超导体、有机超导体、铁基超导体以及其他氧化物超导体等,超导温度也在不断提升。然而即便是常见的高温超导材料仍要接近液氮温度才能够实现,使得超导材料距离人们生活中大规模应用仍然存有相当的距离。而近日在美国物理学会春季会议,罗彻斯特大学的兰加·迪亚斯团队宣布在1GPa压强下,在镥-氮-氢体系中实现了室温超导,使整个物理学界沸腾了。这篇工作也刊登于Nature期刊,3月8日在线发表。图1. 兰加·迪亚斯在美国物理学会春季会议的报告 相比于之前的氢化物超导,此次氮掺杂镥氢化物超导存在两个惊人的发现:一是该超导材料的临界超导温度达到了21度,二是压力仅需要1万个标准大气压(1Gpa)。这与之前动辄上百Gpa压力的极端高温超导条件天差地别,具有极高的应用潜力。 如此震惊世界的发现,作者在进行超导判定时也非常谨慎,分别从电、磁、热三个维度进行了超导转变实验验证。氮掺杂镥氢化物随着压力的增加,会发生两次明显的可视相变,起初样品无超导性,呈现蓝色(I相)。随着压力增加到3kbar,样品进入超导相(II相),颜色也转变为粉红色。进一步提升到32kbar以上,样品再次进入一个无超导金属相(III相),样品颜色此时也转变为鲜艳红色。图2:镥-氮-氢体系超导与可视相变 对不同压力下的超导相进行电输运测量,零外场条件下,温度依赖的电输运测量表明,随温度下降,电阻会存在一个陡然下降至零的行为,超导转变宽度与转变温度的比值ΔT/ΔTC在0.005至0.036范畴,可以在GL理论的脏极限范畴解释。零外场下,V-I特性曲线在超导转变温度上下明显不同:超导转变温度之上,材料具有线性V-I响应,符合欧姆定律;超导转变温度之下,电压几乎不可测量,并具有非线性响应。图3. 镥-氮-氢体系温度依赖的电输运测量和V-I特性曲线 对于超导转变判定,除零电阻行为外,更为关键的是迈斯纳现象的发现。本文磁学测量方面,温度依赖的磁化强度曲线和M-H曲线基于Quantum Design PPMS系统完成,并搭配了相应的磁测量高压包选件。在8kbar压强下,场冷、零场冷条件下磁化强度的测量表明了一个清晰明确的迈斯纳现象的存在,确定超导转变为277K。宽超导可能源于高压包不同压力梯度或者材料的不均匀性。磁测量获得的超导转变与电阻测量结果相吻合。除直流磁化率外,交流磁化率也明显观测到超导转变带来的抗磁性。图4. 镥-氮-氢体系直流与交流磁化率测量 而热输运方面,比热测量同样是验证超导转变的重要途径,根据BCS理论,超导转变伴随有能带打开能隙,会导致比热激增。本文采用了新型交流量热技术,获得了不同压力下,材料比热随温度的演变关系,可以看出,比热具有明显的不连续特征,由此获得的超导转变温度也与电、磁测量相吻合。图5. 镥-氮-氢体系的高压比热测量 本文通过电、磁、热三个维度的实验验证了镥-氮-氢体系在1GPa下接近室温的超导电性,但关于其内容见解,各路大神众说纷纭。此篇文章中,使用了PPMS磁测量高压腔组件,能够实现1.3GPa压力下的等静压磁学测量。相信在未来的超导探索工作中,PPMS的磁学测量和电学测量高压腔能够发挥更多更重要的贡献。图6:Quantum Design 高压磁学和电学测量功能组件相关产品:综合物性测量系统-PPMS:https://www.yiqi.com/zt2203/product_351395.html完全无液氦综合物性测量系统-DynaCool:https://www.yiqi.com/zt2203/product_351355.html
124人看过
- 2023-06-14 16:49:45无掩膜直写光刻系统助力二维材料异质结构电输运性能研究,意大利
- 期刊:ACS NanoIF:18.027文章链接: https://doi.org/10.1021/acsnano.1c09131 【引言】 MoS2是一种典型的二维材料,也是电子器件的重要组成部分。研究者发现,当MoS2与石墨烯接触会产生van der Waals作用,使之具有良好的电学特性,可广泛应用于各类柔性电子器件、光电器件、传感器件的研究。然而,MoS2-石墨烯异质结构背后的电输运机理尚不明确。这主要是因为传统器件只有两个接触点,不能将MoS2-石墨烯异质结构产生的电学输运特性与二维材料自身的电学特性所区分。此外,电荷转移、应变、电荷在缺陷处被俘获等因素也会对器件的电输运性能产生影响,进一步提高了相关研究的难度。尽管已有很多文献报道MoS2-石墨烯异质结构的电输运性能,但这些研究主要基于理论计算,缺乏对MoS2-石墨烯异质结构的电输运性能在场效应器件中的实验研究。 【成果简介】 2021年,意大利比萨大学Ciampalini教授课题组利用小型台式无掩膜直写光刻系统- MicroWriter ML3 制备出基于MoS2-石墨烯异质结构的多场效应管器件,在场效应管器件中直接测量了MoS2-石墨烯异质结构的电输运特性。通过比较MoS2的跨导曲线和石墨烯的电流电压特性,发现在n通道的跨导输运被抑制,这一现象明显不同于传统对场效应的认知。借助第一性原理计算发现这一独特的输运抑制现象与硫空位相关。 本文中所使用的小型台式无掩膜直写光刻系统- MicroWriter ML3无需掩膜版,可在光刻胶上直接曝光绘出所要的图案。设备采用集成化设计,全自动控制,可靠性高,操作简便,同时其还具备结构紧凑(70cm X 70cm X 70cm)、高直写速度,高分辨率(XY:
143人看过
- 2023-05-18 16:59:34全共线多功能超快光谱仪与高精度激光扫描显微镜,二维材料与超快
- 全共线多功能超快光谱仪BIGFOOT MONSTR Sense Technologies是由密歇根大学研究人员成立的科研设备制造公司。该公司致力于研发为半导体研究应用而优化的超快光谱仪和显微镜,突破性的技术可将光学器件和射频电子器件耦合在一起,以稳健的方式测量具有干涉精度的光学信号,真正实现一套设备、一束激光、多种功能。图1. 全共线多功能超快光谱仪BIGFOOT 全共线多功能超快光谱仪BIGFOOT不仅兼具共振和非共振超快光谱探测,还可以兼容瞬态吸收光谱(Transient absorption (TAS))、相干拉曼光谱(Coherent Raman Spectroscopy (CRS))、多维相干光谱探测(Multidimensional Coherent Spectroscopy (MDCS))。开创性的全共线光路设计,使其可以与该公司研发的高精度激光扫描显微镜(NESSIE)联用,实现超高分辨超快光谱显微成像。全共线多功能超快光谱仪的开发也充分考虑了用户的使用体验,系统软件可自动调控参数,光路自动对齐、无需校正等特点都使得它简单易用。全共线多功能超快光谱仪BIGFOOT主要技术参数:高精度激光扫描显微镜NESSIE MONSTR Sense Technologies的高精度激光扫描显微镜NESSIE可用入射激光快速扫描样品,在几秒钟内就能获得高光谱图像。该设备可适配不同高度的样品台和低温光学恒温器,物镜高度最多可变化5英寸,大样品尺寸同样适用。NESSIE显微镜是具有独立功能,可以与几乎任何基于激光测量与高分辨率成像的设备集成在一起,也非常适合与该公司研发的全共线多功能超快光谱仪集成。 图2. 高精度激光扫描显微镜NESSIE 高精度激光扫描显微镜-NESSIE的输入信号为单个激光光束,输出信号为样品探测点收集的单个反向传播光束,这样的光路设计确保了反传播信号在扫描图像时不会相对于输入光束漂移,因而非常适用于激光的实验中的成像显微镜系统。 图3. 使用NESSIE在室温下测量的GaAs量子阱的图像。a) 用相机测量的白光图像。b) 用调谐到GaAs带隙的80MHz激光器(5mW激光输出)进行激光扫描线性反射率测量。c) 同时测量的激光扫描四波混频图像揭示了影响GaAs层的亚表面缺陷 BIGFOOT+NESSIE应用案例:1. 高精度激光扫描显微镜用于材料表征 美国密歇根大学课题组通过使用基于非线性四波混频(FWM)技术的多维相干光谱MDCS测量先进材料的非线性响应,利用激子退相和激子寿命来评估先进材料的质量。课题组使用通过化学气相沉积生长的WSe2单分子层作为一个典型的例子来证明这些功能。研究表明,提取材料参数,如FWM强度、去相时间、激发态寿命和暗/局部态分布,比目前普遍的技术,包括白光显微镜和线性微反射光谱学,可以更准确地评估样品的质量。在室温下实时使用超快非线性成像具有对先进材料和其他材料的快速原位样品表征的潜力。图4. (a)通过拟合时域单指数衰减得到的样本的去相时间图,在图(a)中用三角形标记的选定样本点处的FWM振幅去相曲线【参考】Eric Martin, et al; Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022). 2.二维材料中激子相互作用和耦合的成像研究 过渡金属二卤代化合物(TMDs)是量子信息科学和相关器件领域非常有潜力的材料。在TMD单分子层中,去相时间和非均匀性是任何量子信息应用的关键参数。在TMD异质结构中,耦合强度和层间激子寿命也是值得关注的参数。通常,TMD材料研究中的许多演示只能在样本上的特定点实现,这对应用的可拓展性提出了挑战。美国密歇根大学课题组使用了多维相干成像光谱(Multi-dimensional coherent spectroscopy, 简称MDCS),阐明了MoSe2单分子层的基础物理性质——包括去相、不均匀性和应变,并确定了量子信息的应用前景。此外,课题组将同样的技术应用于MoSe2/WSe2异质结构研究。尽管存在显著的应变和电介质环境变化,但相干和非相干耦合和层间激子寿命在整个样品中大多是稳健的。图5. (a)hBN封装的MoSe2/WSe2异质结构的白光图像。(b)MoSe2/WSe2异质结构在图(a)中的标记的三个不同样本点处的低功率低温MDCS光谱。(c)图(b)中所示的四个峰值的FWM(Four-Wave Mixing)四波混频积分图。(d)MoSe2/WSe2异质结构上的MoSe2共振能量图。(e)MoSe2/WSe2异质结构的WSe2共振能量图。(f)所有采样点的MoSe2共振能量与WSe2共振能量【参考】Eric Martin, et al; Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides, J. Chem. Phys. 156, 214704 (2022) 3. 掺杂MoSe2单层中吸引和排斥极化子的量子动力学研究 当可移动的杂质被引入并耦合到费米海时,就形成了被称为费米极化子的新准粒子。费米极化子问题有两个有趣但截然不同的机制: (i)吸引极化子(AP)分支与配对现象有关,跨越从BCS超流到分子的玻色-爱因斯坦凝聚;(ii)排斥分支(RP),这是斯通纳流动铁磁性的物理基础。二维系统中的费米极化子的研究中,许多关于其性质的问题和争论仍然存在。黄迪教授课题组使用了Monstr Sense公司的全共线多功能超快光谱仪BIGFOOT研究了掺杂的MoSe2单分子层。课题组发现观测到的AP-RP能量分裂和吸引极化子的量子动力学与极化子理论的预测一致。随着掺杂密度的增加,吸引极化子的量子退相保持不变,表明准粒子稳定,而排斥极化子的退相率几乎呈二次增长。费米极化子的动力学对于理解导致其形成的成对和磁不稳定性至关重要。图6. 单层MoSe2在不同栅极电压下的单量子重相位振幅谱【参考】Di HUANG, et al; Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer, PHYSICAL REVIEW X 13, 011029 (2023)
132人看过
- 公司新闻
- 应急技术装备
- 以色列科学基金会
- 无人驾驶货物运
- 半导体气体传感器
- 液态燃料钍基熔盐实验堆
- 测定电极法
- 协同防控科技攻关
- 技术评价实验室
- 科技统计调查工作
- 深海多位点着陆器
- 无人机载激光雷达系统
- 遥感监测技术规范
- 条码水准标尺校准规范
- RDMA编程挑战赛
- 技能竞赛实施方案
- 企业温室气体
- 建设专项科普专题
- 川藏铁路地灾监测
- 国际危废处置
- 柴油车车载排放诊断系统
- 悬浮床加氢技术
- 扬尘在线监测
- 面反射通信
- 月壤结构探测仪
- 脑PET图像分析
- 项目开工启动会
- 安全通用规范
- 资源化利用高峰论坛
- 电线电缆检测
- 科技成果在线对接会
- 新能源汽车产业
- 深海原位CDOM荧光传感器
- 2020年第三批行业标准制修订
- 自动包装流水线
- 技术检验项目
- 移动物联网应用